
PREVIEW – for review only. Not official version
-1-

PREVIEW – for review only. Not official version

IBM Tivoli Directory Integrator 6.0
Server API Developers Guide

Version: 0.9, Date: 2006/03/01

1. Overview...2
Sample use case ..3

2. Local and Remote Server API interfaces..3
3. Server API structure..4
4. Security ...4
5. Configuring the Server API ..5

5.1. Configuring the Server API properties ...5
5.2. Setting up the User Registry ...5
5.3. Remote client configuration..5
5.3.1. SSL configuration of the remote client...6

6. Using the Server API ..7
6.1. Creating a local Session ..7
6.1.1. Access to the Server API in a scripting context..7
6.2. Creating a remote Session...7
6.3. Working with Config Instances ..8
6.3.1. Getting access to running Config Instances..8
6.3.2. Starting a Config Instance...8
6.3.3. Stopping a Config Instance...8
6.4. Working with AssemblyLines ..9
6.4.1. Getting access to the AssemblyLines available in a configuration.............................9
6.4.2. Getting access to running AssemblyLines..9
6.4.3. Starting an AssemblyLine...10
6.4.4. Starting an AssemblyLine in manual mode ..10
6.4.5. Starting an AssemblyLine with a listener ...11
6.4.6. Stopping an AssemblyLine ...12
6.5. Working with EventHandlers ...12
6.6. Editing configurations...13
6.7. Registering for Server API event notifications...13
6.8. Getting access to log files ...15
6.9. Server Info ..16
6.10. Using the Security Registry ..17

7. The JMX layer ..18
7.1. Local access to the JMX layer ..18
7.2. Remote access to the JMX layer...18
7.3. MBeans and Server API objects ...19
7.4. JMX notifications..19
8. Miscellaneous ...20
8.1. Concurrent use ..20

PREVIEW – for review only. Not official version
-2-

1. Overview
The Server API of the IBM Tivoli Directory Integrator provides a set of programming calls that
can be used to develop solutions and interact with the TDI Server locally and remotely. It also
includes a management layer that exposes the Server API calls through the JMX interface.

The Server API includes calls that let you:
 Get information about the Directory Integrator Server
 Get information about components installed on the Server
 Read, Modify and Write configurations loaded by the Server
 Create and Load new configurations on the Server
 Start, Query and Stop AssemblyLines and EventHandlers
 Cycle manually through AssemblyLines
 Register for and Receive notifications for Server events
 Register for and Receive AssemblyLines and EventHandlers log messages

All calls can be invoked:
 Locally, from the TDI Server JVM:

This type of access includes scripting in AssemblyLine or EventHandler hooks and also
using the API from new components (Connectors, EventHandlers) implemented in Java and
deployed on the Server

 Remotely, from another JVM (on the local or a remote network machine), through RMI:
This type of access enables the implementation of solutions that remotely connect to TDI
and manage processes within TDI or/and build business logic on top of TDI. It could be an
application dedicated solely to TDI or an application that uses TDI to accomplish some of
its goals.

A management layer of the Server API exposes the Server API calls through JMX. This provides
for Server manageability and enables plugging TDI into a managing infrastructure that speaks
JMX. The JMX interface is accessible:

 Locally, as defined in the JMX 1.2 specification
 Remotely, through RMI as defined by the JMX Remote API 1.0 specification

The notifications emitted by the Server API internal engine are also available as JMX notifications.

Remote access to the Server API (including the JMX Remote API) is secured by using SSL with
client and server authentication.

The different methods that can be used to access the TDI Server API are depicted on the diagram
below:

PREVIEW – for review only. Not official version
-3-

Sample use case
A client (possibly an AssemblyLine on a TDI Server) needs to start an AssemblyLine on another
TDI Server. The client could use the Server API and access it remotely through the RMI interface,
using the Server API RMI client library.

In accordance with the security model described in the “Error! Reference source not found.”
section, the client will first create an SSL session to the remote TDI Server using its own
certificate. The Server will successfully authenticate the client if it has the client certificate in its
trust store. Provided that the authentication is successful and the SSL channel is established, the
client will be provided with an object that represents an entry point for calling Server API methods.
Using that object the client will invoke the call for starting an AssemblyLine passing parameters
that specify which AssemblyLine needs to be started. Before actually executing the method the
Server API will check whether the client is authorized to execute that method – the identity of the
client is determined through the client certificate used to establish the SSL channel. If the client is
allowed to start this AssemblyLine the method will be executed and the AssemblyLine will be
started, otherwise the method will not be executed and an error (exception) will be sent back to the
client indicating that he is not authorized to perform this operation.

2. Local and Remote Server API interfaces
The Server API provides two sets of interfaces – for local and remote use. Both sets provide the
same calls and functionality but they reside in different Java packages.

The package com.ibm.di.api.local contains the interfaces for local access and
com.ibm.di.api.remote contains the interfaces for remote access to the Server through RMI.

Detailed specification of the local and remote interfaces and their methods can be found in the
JavaDoc documentation shipped with the Directory Integrator (in “docs/api” folder under the root
folder where the Directory Integrator is installed).

T
D

I
S

e
rv

e
r

A
P

I

R
M

I
J

M
X

Local components

(AssemblyLines,
Connectors, etc.)

Local JMX client
R

em
ot

e
A

P
I

T
D

I S
er

ve
r

Remote Client
/possibly another TDI Server/

Calls TDI Server API through RMI

Remote JMX Client

Calls JMX remotely through JMX
Remote API

PREVIEW – for review only. Not official version
-4-

All interfaces in the remote package extend java.rmi.Remote and all their methods throw
java.rmi.RemoteException. The interfaces for local access on the other hand do not extend
java.rmi.Remote and their methods do not throw java.rmi.RemoteException which facilitates
coding and is one of the reasons to have separate set of interfaces for local and remote access.

3. Server API structure
The structure of the local and remote interfaces is identical. The text below refers to the names of
the Java interfaces only and is valid for the interfaces from both the local (com.ibm.di.api.local)
and remote (com.ibm.di.api.remote) Server API Java packages.

The entry point to the Server API is the SessionFactory interface
(com.ibm.di.api.local.SessionFactory for local use and com.ibm.di.api.remote.SessionFactory for
remote use).

The SessionFactory interface provides a method called createSession(). It creates an API session
for the user/entity that calls it and returns an object of type Session. It is this Session object that
provides further access to the calls of the Server API.

Through the Session object one can get Server information or stop the Server itself, existing Config
Instances can be obtained or new Config Instances can be loaded and created from scratch. Some
of the calls of the Session object will return other Server API objects – for example
startConfigInstance(String aConfigUrl) will return a ConfigInstance object. The ConfigInstance
object gives access to the configuration data structure, to AssemblyLines and EventHandlers
running in the Config Instance as well as calls for starting new AssemblyLines and EventHandlers.
Some of its calls will also return Server API objects - startAssemblyLine(String
aAssemblyLineName) for example returns an AssemblyLine object that you can use to query and
perform different operations on the AssemblyLine.

To summarize, the Session object is the one that gives access to the hierarchy of Server API
objects. All Server API calls are either invoked directly on the Session object or they are invoked
on objects retrieved directly or indirectly through the Session object.

4. Security
Authentication is performed in the process of obtaining the Session object. Once obtained all
methods called on the Session object or on other Server API objects retrieved directly or indirectly
through this Session object are executed under the identity of the user that obtained the Session
object.
Authorization is performed on each method call. Before executing the requested call, the Server
will check whether the identity associated with the current session is authorized to execute that
call.

Local sessions (from the TDI Server JVM) are always authenticated and are granted permissions to
execute all Server API calls.

If the TDI Server is configured to accept a remote session without SSL, the session is authenticated
and granted permissions to execute all Server API calls.
When the Server requires that SSL is used for remote sessions, the identity of the client is
determined through the client certificate used to establish the SSL session. If the identity is

PREVIEW – for review only. Not official version
-5-

registered in the User Registry the authentication will be successful and the user will be able to
execute the Server API calls he is granted access to.

5. Configuring the Server API
Configuring the Server API on the Server side includes specifying the relevant system properties in
global.properties (solution.properties) and configuring the User Registry file.

5.1. Configuring the Server API properties
The Server API engine is configured through a set of properties in the global.properties file (or
solution.properties if a solution folder is used). Refer to the TDI Administrator Guide, section
“Remote Server\Configuring the Server API” for information on how to setup the Server API.

In Fixpack 1 of TDI 6.0 a new property has been added: api.remote.nonssl.hosts. It specifies a list
of IP addresses to accept non SSL connections from (host names are not accepted). Use space,
comma or semicolon as delimiter between IP addresses. This property is only taken into account
when api.remote.ssl.on is set to false.

5.2. Setting up the User Registry
Refer to the TDI Administrator Guide, section “Remote Server\Authorization” for information and
examples of how to setup the User Registry, assign user roles and encrypt/decrypt the User
Registry file.

5.3. Remote client configuration
This section describes what setup is necessary on a remote client that will use the remote Server
API.

Prerequisites:
 Java 1.4.2 or higher is required on the client side.

Configuring the client:
1. The following jar files must be included in the CLASSPATH of the remote side:

 diserverapi.jar
 diserverapirmi.jar
 log4j-1.2.jar
 miconfig.jar
 miserver.jar
 mmconfig.jar

You can copy these jar files from the “<ITDI_root>/jars” folder.

2. When a non-IBM JVM or an IBM JVM prior to 1.4.2 is used on the client side, the file
“xml.jar” from the “<ITDI_root>/_jvm/lib/” folder must be used on the client side. Copy
“xml.jar” to the client machine and point the client’s JVM system property java.endorsed.dirs
to the folder where the “xml.jar” file is placed.

3. If custom non-TDI objects are used in the solution being implemented with the Server API (for
example as Attribute values of an Entry that is transferred over the wire) the corresponding

PREVIEW – for review only. Not official version
-6-

Java classes have to be available on the client side as well. These classes must be serializable
and they have to be included in the CLASSPATH of the client JVM.

5.3.1. SSL configuration of the remote client
There are two options for configuring SSL on the remote client. Which of them will be used
depends on whether the Java System property api.client.ssl.custom.properties.on exists and its
value.

Using Server API specific SSL properties
When the Java System property api.client.ssl.custom.properties.on is set to “true”, then SSL is
configured through the following TDI Server API-specific Java System properties:

 api.client.keystore – specifies the keystore file containing the client certificate
 api.client.keystore.pass – specifies the password of the keystore file specified by

api.client.keystore
 api.client.key.pass – the password of the private key stored in keystore file specified by

api.client.keystore; if this property is missing, the password specified by
api.client.keystore.passis is used instead.

 api.truststore – specifies the keystore file containing the TDI Server public certificate.
 api.truststore.pass – specifies the password for the keystore file specified by

api.truststore.

Using the Server API specific SSL properties is convenient when your client application is using
the standard Java SSL properties for configuration of another SSL channel used by the same
application.

You can specify these properties as JVM arguments on the command line, for example:

java MyTDIServerAPIClientApp
-Dapi.client.ssl.custom.properties.on=true
-Dapi.truststore=C:\TDI\serverapi\testadmin.jks
-Dapi.truststore.pass=administrator
-Dapi.client.keystore=C:\TDI\serverapi\testadmin.jks
-Dapi.client.keystore.pass=administrator

This example refers to the sample “testadmin.jks” keystore file shipped with TDI. Note that it
contains both the client private key and also the public key of the TDI Server, so we use it both as a
keystore and truststore.

Using the standard SSL Java System properties:
When the Java System property api.client.ssl.custom.properties.on is missing or when it is set to
“false”, then the standard JSSE system properties are used for configuring the SSL channel. Follow
the standard JSSE procedure for configuring the keystore and truststore used by the client
application.

You can specify these properties as JVM arguments on the command line, for example:

java MyTDIServerAPIClientApp
-Djavax.net.ssl.keyStore=C:\TDI\serverapi\testadmin.jks
-Djavax.net.ssl.keyStorePassword=administrator
-Djavax.net.ssl.trustStore=C:\TDI\serverapi\testadmin.jks
-Djavax.net.ssl.trustStorePassword=administrator

PREVIEW – for review only. Not official version
-7-

6. Using the Server API

6.1. Creating a local Session
If you are writing Java code that will be executed in the TDI Server JVM (for example a new
Connector, or a Java class that you will access through scripting) and you want to execute Server
API calls, you’ll need a local Server API session.

You can obtain a local Server API session by calling:

import com.ibm.di.api.APIEngine;
import com.ibm.di.api.local.Session;

...

Session session = APIEngine.getLocalSession();

getLocalSession() is a static method of the com.ibm.di.api.APIEngine class. It creates and returns a
new com.ibm.di.api.local.Session object. This session returned has admin rights and can execute all
Server API calls.

6.1.1. Access to the Server API in a scripting context
You can get access to the Server API from a scripting context (for example from AssemblyLine
hooks) by calling Packages.com.ibm.di.api.APIEngine.getLocalSession().This will give you a local
session object that you can use in your scripts.

Note: In TDI 6.1 a script object will be registered that will provide direct access to a local Server
API session object.

6.2. Creating a remote Session
A client application that uses the remote Server API would first need to connect to the TDI Server
and obtain a Server API Session.

Use the following Java code to lookup the RMI SessionFactory object and obtain a Server API
Session.

import com.ibm.di.api.remote.Session;
import com.ibm.di.api.remote.SessionFactory;

...

SessionFactory sessionFactory = (SessionFactory)
Naming.lookup("rmi://<TDI_Server_host>:<TDI_Server_RMI_port>/SessionFactory");

Session session = sessionFactory.createSession();

You need to replace <TDI_Server_host> and <TDI_Server_RMI_port> with the host and the RMI
port of the TDI Server, for example
Naming.lookup("rmi://127.0.0.1:1099/SessionFactory").

PREVIEW – for review only. Not official version
-8-

The calls provided by the local and remote Session objects are identical. All examples below
assume that you have already obtained a session and will operate in a remote context, i.e. the
remote versions of the Server API interfaces will be used.

6.3. Working with Config Instances
The Config Instance is representing a configuration loaded on the TDI Server and the associated
Server object. Each AssemblyLine or EventHandler is running in the context of a Config Instance.
Through a Config Instance you can query the configuration of AssemblyLines, EventHandlers,
Connectors, Parsers, start AssemblyLines and EventHandlers, get access to running
AssemblyLines and EventHandlers and query their log files.

6.3.1. Getting access to running Config Instances
You can get access to all Config Instances running on the TDI Server by executing the following
piece of code:

ConfigInstance[] configInstances = session.getConfigInstances();
for (int i=0; i<configInstances.length; i++) {

// do something with configInstances[i]
}

The getConfigInstances() method will return an array with Config Instance Server API objects
representing all Config Instances running on the Server.

6.3.2. Starting a Config Instance
In order to load a new configuration on the TDI Server you need to start a new Config Instance,
pointing it to the XML configuration file:

ConfigInstance configInstance = session.startConfigInstance("testconfig.xml");

This will load the “testconfig.xml” configuration file (from the TDI solution folder) and start a new
Config Instance object associated with that configuration. Once you get that Config Instance object
you can use it to change the configuration itself, start AssemblyLines and EventHandlers or stop
the Config Instance on the Server when you no longer need it.

6.3.3. Stopping a Config Instance
Assuming that you have a reference to the Config Instance Server API object, you can stop the
Config Instance by calling:

configInstance.stop();

As you’ll need a reference to the Config Instance object, you have the following options:
 Keep that reference from where you started the Config Instance, i.e. configInstance =

session.startConfigInstance("testconfig.xml")
 Retrieve the Config Instance object through its Config ID by calling

session.getConfigInstance (String aConfigId). The Config ID is a unique identifier for each
Config Instance running on the Server. It is created by the Server API when the

PREVIEW – for review only. Not official version
-9-

corresponding Server API Config Instance object is created. You can retrieve the Config ID
through the Config Instance object by calling configInstance.getConfigId().

 Iterate through all running Config Instances and find the one you need:
session.getConfigInstances() will return an array of all running Config Instances.

6.4. Working with AssemblyLines

6.4.1. Getting access to the AssemblyLines available in a configuration
Assuming that you already have a reference to the Config Instance object, first you will have to
obtain the MetamergeConfig object representing the configuration data structure for the whole
Config Instance and then get the available AssemblyLines:

import com.ibm.di.config.interfaces.MetamergeConfig;
import com.ibm.di.config.interfaces.MetamergeFolder;
import com.ibm.di.config.interfaces.AssemblyLineConfig;

...

MetamergeConfig configuration = configInstance.getConfiguration();
MetamergeFolder configFolder =
 configuration.getDefaultFolder(MetamergeConfig.ASSEMBLYLINE_FOLDER);
String[] assemblyLineNames = configFolder.getNames();
if (assemblyLineNames != null) {
 for (int i=0; i<assemblyLineNames.length; i++) {
 System.out.println(assemblyLineNames[i]);

 // get the AssemblyLine configuration object
 AssemblyLineConfig alConfig =
 configuration.getAssemblyLine(assemblyLineNames[i]);
 // do something with alConfig ...
 }
}

This block of code prints to the standard output the names of all AssemblyLines in the
configuration and demonstrates how to get hold of the AssemblyLine configuration objects. You
can use the AssemblyLine configuration object to get more detailed information like what
Connectors are configured in the AssemblyLine, their parameters, etc.

Note that the MetamergeConfig, MetamergeFolder and AssemblyLineConfig interfaces are not part
of the Server API interfaces. They are part of the TDI configuration driver (see the import clauses
in the example) and they are not remote objects. When configInstance.getConfiguration() is
executed the MetamergeConfig object is serialized and transferred over the wire. Your code will
then work with the local copy of that object.

6.4.2. Getting access to running AssemblyLines
You can get the active AssemblyLines either for a specific Config Instance or you can get all
active AssemblyLines on the TDI Server for all running Config Instances.

Getting the active AssemblyLines for a specific Config Instance
You will need a reference to the Config Instance object. The following code will return all
AssemblyLines currently running in the Config Instance:

PREVIEW – for review only. Not official version
-10-

AssemblyLine[] assemblyLines = configInstance.getAssemblyLines();
for (int i=0; i<assemblyLines.length; i++) {
 System.out.println(assemblyLines[i].getName());

 // do someting with assemblyLines[i]
}

Getting the active AssemblyLines for the whole TDI Server
If you want to get all AssemblyLines running on the Server, execute the following code:

AssemblyLine[] assemblyLines = session.getAssemblyLines();
for (int i=0; i<assemblyLines.length; i++) {
 System.out.println(assemblyLines[i].getName());

 // do someting with assemblyLines[i]

 // which Config Instance this AssemblyLine belongs to?
 ConfigInstance alConfigInstance = assemblyLines[i].getConfigInstance();
}

Note that this is executed at the session level and not for a particular Config Instance. If you need
to know which Config Instance a running AssemblyLine belongs to, you can get a reference to the
parent Config Instance object through the AssemblyLine object.

You can use the AssemblyLine Server API object to get various AssemblyLine properties, the
AssemblyLine configuration object, AssemblyLine log, AssemblyLine result Entry as well as stop
the AssemblyLine.

6.4.3. Starting an AssemblyLine
You can start an AssemblyLine through the Config Instance object to which the AssemblyLine
belongs. You need to know the name of the AssemblyLine you want to start:

AssemblyLine assemblyLine = configInstance.startAssemblyLine("MyAssemblyLine");

You also receive a reference to the newly started AssemblyLine instance.

6.4.4. Starting an AssemblyLine in manual mode
The Server API provides a mechanism for manually running an AssemblyLine. In manual mode
the AssemblyLine is not running in its own thread - instead, when you start it, it is only initialized.
Iterations on the AssemblyLine are done in a synchronous manner when the executeCycle()
method of the AssemblyLine object is called. This call blocks the current thread and when the
AssemblyLine iteration is done it returns the result Entry object.

The following code will start the “TestAL” AssemblyLine in manual mode and execute 3 iterations
on it. The result Entry from each iteration is printed to the standard output:

AssemblyLineHandler alHandler =
configInstance.startAssemblyLineManual("TestAL", null);

Entry entry = null;
for (int i=0; i<3; i++) {
 entry = alh.executeCycle();
 System.out.println("TestAL entry: " + entry);

PREVIEW – for review only. Not official version
-11-

}
alHandler.close();

The startAssemblyLineManual(String aAssemblyLineName, Entry aInputData) method of the
Config Instance object starts an AssemblyLine in manual mode and returns an object of type
com.ibm.di.api.remote.AssemblyLineHandler. Through this object you can manually iterate
through the AssemblyLine, you can pass an initial work Entry and various Task Call Block
parameters, you can get a reference to the AssemblyLine Server API object and you can terminate
the AssemblyLine when you are done with it.

You can imitate the AssemblyLine runtime behavior by calling executeCycle() until it returns
NULL.

6.4.5. Starting an AssemblyLine with a listener
When you start an AssemblyLine through the Server API you can register a specific AssemblyLine
listener that will receive notifications on each AssemblyLine iteration, delivering the result Entry,
and also when the AssemblyLine terminates. Through this mechanism you can start an
AssemblyLine from a remote application and easily receive all Entries produced by the
AssemblyLine. The AssemblyLine listener will also deliver all messages logged during the
execution of the AssemblyLine.

Your listener class must implement the com.ibm.di.api.remote.AssemblyLineListener interface (or
com.ibm.di.api.local.AssemblyLineListener for local access). The methods you have to take care of
are:

 assemblyLineCycleDone(Entry aEntry) – this method will be called at the end of each
AssemblyLine iteration; the aEntry parameter represents the result Entry from the
AssemblyLine iteration.

 assemblyLineFinished() – this method is called by the Server API when the AssemblyLine
terminates.

 messageLogged(String aMessage) – this method is called by the Server API whenever a
message is logged through the AssemblyLine logger. Thus you can get remote real time
access to the log messages produced by the AssemblyLine.

A sample AssemblyLine listener class that only prints to the standard output all Entries received
and all AssemblyLine log messages might look like:

import com.ibm.di.api.DIException;
import com.ibm.di.api.remote.AssemblyLineListener;
import com.ibm.di.entry.Entry;
import java.rmi.RemoteException;

public class MyRemoteALListener implements AssemblyLineListener {

 public void assemblyLineCycleDone(Entry aEntry)
 throws DIException, RemoteException
 {

 System.out.println("AssemblyLine iteration: " + aEntry.toString());
 System.out.println();
 }

 public void assemblyLineFinished()
 throws DIException, RemoteException
 {

PREVIEW – for review only. Not official version
-12-

 System.out.println("AssemblyLine terminated.");
 System.out.println();
 }

 public void messageLogged(String aMessage)
 throws DIException, RemoteException
 {
 System.out.println("AssemblyLine log message: " + aMessage);
 System.out.println();
 }
}

Once you have implemented your AssemblyLine listener class, you need to instantiate a listener
object and pass it when starting the AssemblyLine:

MyRemoteALListener alListener = new MyRemoteALListener();
configInstance.startAssemblyLine("TestAL", null,

AssemblyLineListenerBase.createInstance(alListener,true), true);

The startAssemblyLine(String aAssemblyLineName, Entry aInputData, AssemblyLineListener
aListener, boolean aGetLogs) method specifies the name of the AssemblyLine, an initial work
Entry, the listener object and whether you want to receive log messages – when aGetLogs is false,
the messageLogged(String aMessage) listener method will not be called by the Server API.

Note that when you are registering a listener in a remote context, you have to wrap your specific
listener in an AssemblyLine Base Listener class – this is necessary to provide a bridge between
your custom listener Java class that is not available on the Server side and the Server API
notification mechanism. A base listener class is created by calling the static
createInstance(AssemblyLineListener aListener, boolean aSSLon) method of the
com.ibm.di.api.remote.impl.AssemblyLineListenerBase class. You need to provide the object
representing your listener class and specify whether SSL is used for communication with the
Server or not (note that this is not an option for you to select whether to use SSL or not with this
listener object; here you have to specify how the Server API is configured on the Server side –
otherwise the communication for that listener will fail).

6.4.6. Stopping an AssemblyLine
You need a reference to the AssemblyLine object in order to stop it. You can keep the reference to
the AssemblyLine object from when you started the AssemblyLine or you can iterate through all
running AssemblyLines and find the one you need. Execute the following line of code to stop the
AssemblyLine:

assemblyLine.stop();

6.5. Working with EventHandlers
Everything stated in section “Working with AssemblyLines” about AssemblyLines is valid for
EventHandlers as well. You can work with EventHandlers in exactly the same manner using the
corresponding EventHandler classes, interfaces and methods. Please consult the JavaDocs for the
signatures of the EventHandler related classes, interfaces and methods.

Note: All EventHandlers will be deprecated in TDI 6.1. Connectors in Server or Iterator mode will
be present and will provide the EventHandlers’ functionality.

PREVIEW – for review only. Not official version
-13-

6.6. Editing configurations
You can only edit a configuration loaded on the Server. The process of editing configurations
consists of the following steps: (1) get the configuration object from the remote Server; (2) edit it
locally; (3) set the edited configuration object back on the Server; (4) save the configuration to disk
on the Server (do this if you want to keep your changes persistent in the configuration file):

// get the configuration object
MetamergeConfig configuration = configInstance.getConfiguration();

// modify locally the configuration object
// do something ...

// set the configuration object back on the Server
configInstance.setConfiguration(configuration);

// save the configuration on the disk on the Server
configInstance.saveConfiguration();

Note: In TDI 6.1 a new mechanism for editing configurations will be provided. It will not allow
editing of the configuration of a Config Instance currently running on the Server. Instead the
Server API will provide calls for loading and editing configurations independently of the running
Config Instances. With TDI 6.1 you will still be able to use your code that does the actual
modification of the configuration (the same MetamergeConfig interface is used) but you will have
to obtain the MetamergeConfig object using different Server API calls.

6.7. Registering for Server API event notifications
The Server API provides an event notification mechanism for Server events like starting and
stopping of Config Instances, AssemblyLines and EventHandlers. This allows a local or remote
client application to register for event notifications and react to various events.

Applications that need to register and receive notifications should implement a listener class that
implements the DIEventListener interface (com.ibm.di.api.remote.DIEventListener for remote
applications and com.ibm.di.api.local.DIEventListener for local access). This class is responsible
for processing the Server events. The handleEvent(DIEvent aEvent) method from the
DIEventListener interface is where you need to put your code that processes Server events. Of
course you may implement as many listener classes as you need, with different implementations of
the handleEvent(DIEvent aEvent) method and register all of them as event listeners. A sample
listener that just logs the event object might look like this:

import java.rmi.RemoteException;

import com.ibm.di.api.DIEvent;
import com.ibm.di.api.DIException;
import com.ibm.di.api.remote.DIEventListener;

public class MyListener implements DIEventListener
{
 public void handleEvent (DIEvent aEvent) throws DIException, RemoteException
 {
 System.out.println("TDI Server event: " + aEvent);
 System.out.println();
 }
}

PREVIEW – for review only. Not official version
-14-

Once you have implemented your listener you will need to register it with the Server API. If
however you are implementing a remote application there is one extra step you need to perform
before actually registering the listener object with the Server API – you need to instantiate and use
a base listener object that will wrap the listener you implemented. The base listener class allows
you to use your own listener classes without having the same Java classes available on the Server:

DIEventListener myListener = new MyListener();
DIEventListener myBaseListnener =

DIEventListenerBase.createInstance(myListener, true);

The base listener object implements the same DIEventListener interface – its class however is
already present on the Server and it can act as a bridge between your local client side listener class
and the Server. A base listener object is created by calling the static method
createInstance(DIEventListener aListener, boolean aSSLon) of the
com.ibm.di.api.remote.impl.DIEventListenerBase class. The first parameter aListener represents
the actual listener object and the second one specifies whether SSL is used or not by the Server
API (note that this is not an option for you to select whether to use SSL or not with this listener
object; here you have to specify how the Server API is configured on the Server side – otherwise
the communication for that listener will fail).

When you have your listener object ready (or a base listener for remote access), you can register
for event notifications through the session object:

session.addEventListener(myBaseListnener, "di.*", "*");

The addEventListener(DIEventListener aListener, String aTypeFilter, String aIdFilter) method of
the session object will register your listener. The first parameter aListener is the listener object (or
the base listener object for remote access), aTypeFilter and aIdFilter let you specify what types of
events you want to receive:

 aTypeFilter specifies what type of event objects you want to receive. The currently
supported events are:

o di.ci.start – Config Instance started
o di.ci.stop – Config Instance stopped
o di.al.start – AssemblyLine started
o di.al.stop – AssemblyLine stopped
o di.eh.start – EventHandler started
o di.eh.stop – EventHandler stopped

You can either specify a specific event type like “di.al.start” or you can specify a filter
using the “*” wildcard, for example “di.al.*” will register your listener for all Server events
related to AssemblyLines, while a type filter of “*” or NULL will register your listener for
all events.

 aIdFilter is only taken into account when aTypeFilter is not set to “*” or NULL. It lets you
filter events depending on the object related to the event – for AssemblyLines this is the
AssemblyLine name, for EventHandlers this is the EventHandler name and for Config
Instances this is the Config Instance ID. For example, if you register your listener with
addEventListener(myListnener, "di.al.start", "MyAssemblyLine") it will only be sent events
when the “MyAssemblyLine” AssemblyLine is started and will not receive any other
Server events.

PREVIEW – for review only. Not official version
-15-

If at some point you want to stop receiving event notifications from a listener already registered
with the Server API, you need to unregister the listener. This is done through the same session
object it was registered with by calling:

session.removeEventListener(myListener);

6.8. Getting access to log files
Section “Starting an AssemblyLine with a listener” described how we can use listeners to get
AssemblyLine (or EventHandler) log messages in real time as they are produced.

The Server API provides another mechanism for direct access to log files produced by
AssemblyLines or EventHandlers. This mechanism only provides access to the log files generated
by the AssemblyLine or EventHandler SystemLog logger.
You don’t need a reference to an AssemblyLine or EventHandler Server API object to get to the
log file. Also you can access old logs of AssemblyLines/EventHandlers that have terminated.

First you need to get hold of the SystemLog object:

SystemLog systemLog = session.getSystemLog();

You can then ask for all the log files generated by an AssemblyLine:

String[] alLogFileNames = systemLog.getALLogFileNames("C__Dev_ITDI_rs.xml",
"TestAL");

if (alLogFileNames != null) {
 System.out.println("Availalbe AssemblyLine log files:");
 for (int i=0; i<alLogFileNames.length; i++) {
 System.out.println(alLogFileNames[i]);
 }
}

The getALLogFileNames(String aConfigId, String aALName) method is passed the Config ID (see
“Stopping a Config Instance” for more details on the Config ID) and the name of the
AssemblyLine. This will return an array with the names of all log files generated by runs of the
specified AssemblyLine.

If you are interested in the last run of the AssemblyLine only, there is a Server API call that will
give you the name of that log file only:

String lastALLogFileName = systemLog.getALLastLogFileName("C__Dev_ITDI_rs.xml",
"TestAL");

System.out.println("AssemblyLine last log file name: " + lastALLogFileName);

When you have got the name of a log file you can retrieve the actual content of the log file:

String alLog = systemLog.getALLog("C__Dev_ITDI_rs.xml", "TestAL",
lastALLogFileName);

System.out.println("TestAL AssemblyLine log: ");
System.out.println(alLog);

PREVIEW – for review only. Not official version
-16-

In cases where the log file can be huge you might want to retrieve only the last chunk of the log.
The sample code below specifies that only the last 10 kilobytes from the log file should be
retrieved:

String alLog = systemLog.getALLogLastChunk("C__Dev_ITDI_rs.xml", "TestAL",
lastALLogFileName, 10);

System.out.println("Last 10K of the TestAL AssemblyLine log: ");
System.out.println(alLog);

The same methods are available for EventHandler log files. Consult the JavaDoc of the
com.ibm.di.api.remote.SystemLog or com.ibm.di.api.local.SystemLog interfaces for the signatures
and description of the EventHandler methods.

The Server API also provides methods for cleaning up (deleting) old log files.

You can delete all log files (for all configurations and all AssemblyLines and EventHandlers) older
than a specific date. The sample code below will delete all log files older than a week:

Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.DATE, -7);
systemLog.cleanAllOldLogs(calendar.getTime());

Another criterion you can use for log files clean up is the number of log files for each
AssemblyLine or EventHandler. You can specify that you want to delete all log files except the 5
most recent logs for all AssemblyLines and EventHandlers:

systemLog.cleanAllOldLogs(5);

You can also delete the log files for AssemblyLines only or for EventHandlers only or for a
specific AssemblyLine or EventHandler. The same two criteria are available: date and number of
log files but in addition you can specify the name of an AssemblyLine or EventHandler or use calls
that operate on all AssemblyLines or all EventHandlers only. Consult the JavaDoc of the
com.ibm.di.api.remote.SystemLog or com.ibm.di.api.local.SystemLog interfaces for the signatures
and the descriptions of all log clean up methods.

6.9. Server Info
Through the Server API you can get various types of information about the TDI Server itself like
the Server version, IP address, operating system, boot time and information about what
Connectors, Parsers, EventHandlers and Function Components are installed and available on the
Server.

It is the ServerInfo object that provides access to this information. You can get the ServerInfo
object through the session object:

ServerInfo serverInfo = session.getServerInfo();

You can then get and print out details of the Server environment:

System.out.println("Server IP address: " + serverInfo.getIPAddress());
System.out.println("Server host name: " + serverInfo.getHostName());
System.out.println("Server boot time: " + serverInfo.getServerBootTime());
System.out.println("Server version: " + serverInfo.getServerVersion());

PREVIEW – for review only. Not official version
-17-

System.out.println("Server operating system: " +
serverInfo.getOperatingSystem());

You can also output a list of all Connectors installed and available on the Server:

String[] connectorNames = serverInfo.getInstalledConnectorsNames();
System.out.println("Connectors available on the Server: ");
for (int i=0; i<connectorNames.length; i++) {
 System.out.println(connectorNames[i]);
}

You can output more details for each installed Connector including its description and version:

String[] connectorNames = serverInfo.getInstalledConnectorsNames();
for (int i=0; i<connectorNames.length; i++) {
 System.out.println("Installed connector: ");
 System.out.println(" name: " + connectorNames[i]);
 System.out.println(" description: " +

serverInfo.getConnectorDescription(connectorNames[i]));
 System.out.println(" version: " +

serverInfo.getConnectorVersionInfo(connectorNames[i]));
 System.out.println();
}

6.10. Using the Security Registry
The Security Registry is a special Server API object that lets you query what rights a user is
granted and whether he/she is authorized to execute a specific action. This is useful if an
application is building an authentication and authorization logic of its own – for example the
application is using internally a single admin user for communication with the TDI Server and it
manages its own set of users and rights.

The Security Registry object is only available to users with the admin role. It is obtained through
the session object:

SecurityRegistry securityRegistry = session.getSecurityRegistry();

You can then check various user rights. For example securityRegistry.userIsAdmin(“Stan”) will
return true if Stan is granted the admin role; securityRegistry.userCanExecuteAL (“User1”,
“rs.xml”, “TestAL”) will return true only if Stan is allowed to execute AssemblyLine “TestAL”
from configuration “rs.xml”.
Check the JavaDoc of com.ibm.di.api.remote.SecurityRegistry for all available methods.

PREVIEW – for review only. Not official version
-18-

7. The JMX layer
The Server API provides a JMX layer. It exposes all Server API calls through a JMX interface
locally and remotely (through the JMX Remote API 1.0).

Please refer to the TDI Administrator Guide, section “Remote Server\Configuring the Server API”
for information on how to switch on and setup the JMX layer of the Server API for local and
remote access.

7.1. Local access to the JMX layer
You can get a reference to the JMX MBeanServer object from the local Server JVM by calling

import com.ibm.di.api.jmx.JMXAgent;
import javax.management.MBeanServer;

...

MBeanServer jmxMBeanServer = JMXAgent.getMBeanServer();

The getMBeanServer() static method of the com.ibm.di.api.jmx.JMXAgent class will return an
MBeanServer JMX object that represents an entry point to all MBeans provided by the JMX layer
of the Server API. You can also register for JMX notifications with the MBeanServer object
returned.
Note that the getMBeanServer() method will throw an Exception if it is called and the JMX layer
of the Server API is not initialized.

7.2. Remote access to the JMX layer
The remote JMX access to the Server API is implemented as per the JMX Remote API 1.0
specification.

You have to use the following JMX Service URL for remote access:

service:jmx:rmi://<TDI_Server_host>/jndi/rmi://<TDI_Server_host>:<TDI_Server_RM
I_port>/jmxconnector

You need to replace <TDI_Server_host> and <TDI_Server_RMI_port> with the host and the RMI
port of the TDI Server, for example
service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxconnector.

The sample code below demonstrates how a remote JMX connection can be established:

import javax.management.MBeanServerConnection;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

...

JMXServiceURL jmxUrl = new
JMXServiceURL("service:jmx:rmi://localhost/jndi/rmi://localhost:1099/jmxcon
nector");

JMXConnector jmxConnector = JMXConnectorFactory.connect(jmxUrl);

PREVIEW – for review only. Not official version
-19-

MBeanServerConnection jmxMBeanServer = jmxConnector.getMBeanServerConnection();

Similarly to the local JMX access the MBeanServerConnection object is the entry point to all
MBeans and notifications provided by the JMX layer of the Server API. Once you get hold of that
object you are in the JMX world.

For example, you can list all MBeans available on the JMX Server:

Iterator mBeans = jmxMBeanServer.queryNames(null, null).iterator();
while (mBeans.hasNext()) {
 System.out.println("MBean: " + mBeans.next());
}

7.3. MBeans and Server API objects
The JMX layer wraps the Server API objects in MBeans. The access to the MBeans is however
straightforward - you can directly look up an MBean through the MBeanServerConnection object.

There is no session object in the MBean layer (the session and the security checks are managed
through the RMI session). The methods for creating, starting and stopping Config Instances that
exist in the Server API Session object can be found in the DIServer MBean in the JMX layer.

A list of the Server API MBeans available at some time on a TDI Server might look like this:
 ServerAPI:type=ServerInfo,id=192.168.113.222
 ServerAPI:type=ConfigInstance,id=C__Dev_ITDI_11_11_fp1_rs.xml
 ServerAPI:type=AssemblyLine,id=AssemblyLines/longal.618794016
 ServerAPI:type=DIServer,id=winserver
 ServerAPI:type=SystemLog,id=SystemLog
 ServerAPI:type=SecurityRegistry,id=SecurityRegistry
 ServerAPI:type=Notifier,id=Notifier

Each Config Instance, AssemblyLine or EventHandler is wrapped in an MBean. When the Config
Instance, AssemblyLine or EventHandler is started the MBean is created automatically and it is
automatically removed when the Config Instance, AssemblyLine or EventHandler terminates.

Refer to the JavaDoc of the Java package com.ibm.di.api.jmx.mbeans for all available MBeans,
their methods and attributes.

7.4. JMX notifications
The JMX layer of the Server API provides local and remote notifications for all Server API events
(see “Registering for Server API event notifications”). You have to register for JMX notifications
with the Notifier MBean.

The JMX notification types are exactly the same as the Server API notifications:
 di.ci.start – Config Instance started
 di.ci.stop – Config Instance stopped
 di.al.start – AssemblyLine started
 di.al.stop – AssemblyLine stopped
 di.eh.start – EventHandler started

PREVIEW – for review only. Not official version
-20-

 di.eh.stop – EventHandler stopped

8. Miscellaneous

8.1. Concurrent use
The Server API does not isolate or coordinate simultaneous access by multiple users.

If for example several users are updating a Config Instance configuration (the MetamergeConfig
object) the one that sets the configuration object back last, i.e. last calls
ConfigInstance.setConfiguration(…), will have his version of the configuration object saved,
possibly overwriting the changes made by other users.

Note: In TDI 6.1 a new mechanism for editing configurations will be provided that will protect
configurations against concurrent modifications. With TDI 6.1 you will still be able to use your
code that does the actual modification of the configuration (the same MetamergeConfig interface
is used) but you will have to obtain the MetamergeConfig object using different Server API calls.

