
TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 1

Synchronizing Data with TDI
 by Eddie Hartman

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 2

How To Use TDI to Synchronize Data .. 3

1.1 Introduction .. 3

1.2 The Entry Object .. 4

2 Delta Detection... 7

2.1 Change Detection Connectors.. 7

2.1.1 Iterator State ... 8

2.2 The Delta Engine.. 9

2.2.1 Performance and Risk .. 11

2.3 LDIF Parser .. 12

3 Delta Tagging... 13

3.1 Delta Operation Codes ... 13

3.1.1 Entry Operation Codes ... 13

3.1.2 Attribute and Value Operation Codes .. 14

3.1.3 Tagging Rules for Delta Operation Codes ... 16

3.1.4 Displaying Delta Operation Codes... 16

3.1.5 Manual Delta Code Tagging .. 18

4 Delta Application ... 21

4.1.1 Manual Delta Application .. 21

4.1.2 Delta Mode... 22

4.1.3 Compute Changes .. 24

5 Conclusion.. 25

6 References .. 26

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 3

How To Use TDI to Synchronize Data
The basic goal of data synchronization is to detect changes in one data source and then
propagating these to one or more targets. Capturing changes in data sources is not as easy as
you might think. Some systems have detailed change logs, but most do not. How do you
know if a single value from a multi-value field has been deleted? Fortunately, TDI provides
the framework to let you deal with this at a comfortable high level. However, a certain
amount of understanding is required to take full advantage of TDI’s capabilities.

This document outlines the features in TDI designed for building data synchronization
solutions. It also provides insight into how to use them. However, you must already have a
some experience with TDI; At the very least completed the Getting Started tutorial [1].

1.1 Introduction
TDI’s Delta Handling features are designed to facilitate efficient data synchronization. This
means passing on only changes – that is, if it’s possible to detect changes in the source
system. At the other end of the data synch pipe, changes should be made to targets only as
needed to minimize system and network traffic, and to avoid triggering unnecessary
replication.

In summary, Delta Handling can be thought of as three distinct activities:

Delta Detection This is two operations: 1) discovering that a change has occurred in a
data source and 2) retrieving the information needed to propagate the
change. This is discussed in section 2 Delta Detection starting on
page 7.

Delta Tagging Tagging the retrieved data with this delta information. This is done
by assigning (tagging) delta operation codes to the data, describing
the type of change: e.g. add modify, delete, and so on. These are also
referred to as “operation codes” and “delta tags” in TDI literature.
More on this subject in section 3 Delta Tagging, page 13.

Delta Application Using these operation codes to propagate the changes to other
stores/systems as efficiently as possible. Delta Application is detailed
in section 4 Delta Application.

There are specific features in TDI for detecting changes, just as there are for tagging data with
delta operation codes and applying these tags to drive changes to target systems. As you saw
above, the remainder of this document is divided into three sections; one for each of the
aspects of Delta Handling.

But first, this next section on the TDI Entry data model.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 4

1.2 The Entry Object
In order to master delta handling in TDI, you must first understand how data is stored and
transported internally in the system. This is done using an object called an Entry. The Entry
object can be thought of as a Java bucket that can hold any number of Attributes (or none at
all).

Attributes are also bucket-like objects in TDI. Each Attribute can contain zero or more values,
these being the actual data values that are read from (and written to) connected systems.
These Attribute values are Java objects as well – like strings, integers and timestamps1 – and a
single Attribute can readily hold values of different types. However, the type of object used to
store a value is chosen by the component that reads it in, and is usually made at the Attribute-
level. As a result, all the values of a single Attribute will be of the same type.

Although the Entry-Attribute-value paradigm matches nicely to the concept of directory
entries2, this is also how rows in databases are represented inside TDI, as are records in files,
IBM Lotus Notes documents and HTTP pages received over the wire. All data – from any
source that TDI works with – is stored internally as Entry objects with Attributes and their
values.

There are a handful of Entry objects that are created and maintained by TDI. The most visible
instance is called the Work Entry, and it serves as the main data carrier in an AssemblyLine
(AL). This is the bucket used to transport data down an AssemblyLine, passed from one
component to the next during AL execution.

1 Although the Config Editor does not support its display, an Attribute value can conceivably be another Entry
object – complete with its own Attributes and values.
2 Since TDI has borrowed a good deal of terminology from the directory space, you will see a distinction
between terms that represent objects in the system (like an “Entry” object, which will be capitalized) and those
that refer to concepts (e.g. a directory “entry”, written in lowercase).

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 5

The Work Entry is available for use in scripting through the pre-registered variable work,
giving you direct access to the Attributes being handled by an AssemblyLine (and their
values). Furthermore, all Attributes carried by the Work Entry are displayed in the Config
Editor in a window under the Component List of an AssemblyLine3.

So in summary, an Entry holds Attributes which in turn contains data values. Operation codes
that describe the delta status of the bucket itself are kept at the Entry level, while those that
apply to its Attributes and associated values are maintained by the Attribute objects
themselves.

3 Note that only Attributes that appear in Connector Input Maps and AttributeMap Components will be shown in
the Work Entry window. If you add or remove Attributes from work using direct calls, then these will not be
visible here.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 6

In addition to holding Attributes, an Entry object also keeps track of its operation code.
Similarly, Attributes maintain an operation code for itself, as well as one for each value it
contains. More detail on this is found in section 3 Delta Tagging on page 13.

Armed with this knowledge of the TDI Entry data model, it’s time to look at Delta Detection.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 7

2 Delta Detection
As stated above, Delta Detection is the discovery and retrieval of changes. The change
information is then used to Delta Tag retrieved data with operation codes that reflect the type
of changes made. More often than not, the goal of a Delta Detection implementation is to
return only the deltas. So if you are reading from a data source with thousands or millions of
data entries, a typical run of your AssemblyLine will process only the handful that have
changed.

Delta Detection is automatically handled by the following TDI features:

• Change Detection Connectors, like the IBM Directory Server Changelog Connector,
RDBMS Changelog Connector and Domino Change Detection Connector.

• The Delta Engine: Any Connector in Iterator mode has a Delta tab where the System
Store4 is used to keep snapshots of data which are used to detect changes made
between subsequent AL runs.

• The LDIF Parser sets operation codes in the returned Entry object using the delta info
stored in incremental LDIF5 files. Unlike the two preceding items above, the LDIF
Parser does not detect changes. Instead, it interprets the delta codes found in an
incremental LDIF file, which itself only contains information about changes.

The full list of Delta Detection features can be found in

Table 3 - Change Detection Mechanisms and Tagging Levels on page 18. Regardless of the
mechanism used, the end result is an Entry bucket with delta operation codes set.

2.1 Change Detection Connectors
A Change Detection Connector leverages features available in underlying data source for
locating and returning changed entries. Some data sources provide full delta mechanisms –
like LDAP directory changelogs – which are accessed via API or protocol-based calls. Other
Change Detection Connectors need to do more heavy lifting, or rely on logic that must be
plugged into the connected system. For example, the RDBMS Changelog Connector depends
on stored procedures that maintain changelog data for specified tables. These shadow
changelog tables are handled by the RDBMS Changelog Connector in much the same way
that the LDAP Changelog Connector deals with a directory changelog.

Common to all these TDI components is that they operate in Iterator mode. Furthermore,
they offer a timeout parameter to control how long the Connector will wait for new changes
to appear.

Where supported, a Change Detection Connector registers with the data source for change
notifications, receiving a signal whenever a change is made. Other Connectors have to poll
the connected system periodically looking for new changes. Those that rely on polling also
provide a Sleep interval option to define how often polling occurs.

4 The System Store is a feature of TDI used to persist operational data (like Delta Engine snapshots). By default
the System Store feature uses the bundled Cloudscape/DB2e database, but can configured to use DB2, Oracle,
Microsoft SQL Server, or any other compatible RDBMS.
5 Full LDIF files hold complete entries, while incremental LDIF files contain only changes to data.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 8

2.1.1 Iterator State
Another important feature is that all Change Detection Connectors provide an Iterator State
Store parameter for keeping track of the next change to be processed, even between runs of
the AssemblyLine.

This feature uses the System Store to keep track of the starting point for a Change Detection
Connector (for example, the changenumber of a directory changelog). The value of the
Iterator State Store parameter must be globally unique, so that if you have multiple ALs
that use Change Detection Connectors, they will each have their own Iterator state data.

The content of the Iterator State Store works in combination with Connector configuration
settings provided for selecting the next change to process. For example, in the
IBMDirectoryServer Changelog Connector, there is a Start at changenumber parameter
where you can enter the changelog number where processing is to start. This parameter can be
set to either a specific value, to the first change (i.e. changenumber = 1), or to “EOD” (End
of Data). The EOD setting places the cursor at the end of the change list in order to only
process new deltas.

As long as no Iterator State Store is specified, the Change Detection Connector will continue
to use the Start at... setting each time the Connector performs its selectEntries() operation –
for example, when the Iterator is initialized at AL startup, or in a Loop component. The same
will occur if there is no value stored for the specified Iterator State Store identifier.

So, the very first time you run the AL with the Change Detection Connector there will be no
Iterator State Store value yet, so the Start at... parameter will be used. On subsequent
executions, the Start at... setting will be ignored and the Iterator State Store value applied
instead.

TDI stores Iterator state values in the System Store like any other persistent objects, so you
can access this information by using the system.getPersistentObject(),

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 9

system.setPersistentObject() and system.deletePersistentObject() methods using the
Iterator State Store value as the key parameter.

This is of particularly interest given the fact that the Iterator State Store value is saved just
after it is read, and not at the end of each AssemblyLine cycle6. As a result, if the
AssemblyLine fails before changes are applied to all targets then the next time it is started
again, the Iterator state key will cause the Connector to start iterating after this failed change
entry. In other words, the change entry being handled when the AssemblyLine stopped is
skipped on the next run.

You can safeguard against this by managing your own Iterator state values. As an example the
following code snippets in an AssemblyLine will help safeguard against “losing” change
entries as described above. The first two blocks of code shown here are intended for the
Hooks of the Change Detection Connector itself, while the last one is added as a Script
Component at the end of the AssemblyLine.

Prolog – Before
Initialize
Hook of the
Change Det.
Connector

// Apply my own Iterator state store value.
//
var myStateKey = system.getPersistentObject(“myStateKey”);

if (myStateKey != null) // Has this been set before?
 system.setPersistentObject(“itrStateKey”, myStateKey);

Before GetNext
Hook of the
Change Det.
Connector

// Save the current setting for the next change
// in the myStateKey variable. The Iterator State Store
// param is set to “itrStateKey” in my Connector.
//
// Note that this persistent object will not have been
// set the first time the AL is run.
//
myStateKey = system.getPersistentObject(“itrStateKey”);

if (myStateKey == null) // First time AL is run?
 myStateKey = firstChange; // Specific for type of
 // Connector used.

Script Component
at end of AL

// Persist the saved state key when the AL cycle reaches
// the end (this SC should be the last AL component).
//
system.setPersistentObject(“myStateKey”, myStateKey);

Since the Iterator State Store value is used during Connector initialization to set the
starting point for change detection, we need to set this value in a Prolog Hook so it is executed
before initialization. As a result, the first snippet above could just as well be coded in the
AssemblyLine Prolog – Before Init Hook. However, it is best practices to keep component-
specific code tied as closely to the component itself as possible.

2.2 The Delta Engine
When the underlying data store does not provide any delta information, you can use the Delta
Engine to discover changes for you. One example is detecting differences between daily HR
dump files without having to process the entire dump in your AssemblyLine.

The Delta Engine can be set up for any Connector that is in Iterator mode and works by
keeping snapshots of data read in the System Store. Each time you run the AL these snapshots
are compared with new Entries read in by the Iterator. Based on this comparison, all

6 This shortcoming will be addressed in future releases of TDI and its Change Detection componentry, making
the technique shown above unnecessary.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 10

differences are noted and tagged in the Entry, and the snapshot database is updated to reflect
the new state of this data.

This means that the first time you run an AssemblyLine with a Delta Engine-enabled Iterator,
all Entries will be regarded as new ones since there are no previous snapshots of them. After
this initial execution, the snapshot database is populated and the Delta Engine has a basis for
comparison on future runs.

Note that only Attributes in the Input Map of the Iterator will be stored in the Delta table and
used to identify changes. This means that altering the Input Map between one AL execution
and the next will affect Delta operations. Best practices is to delete the Delta table for an
Iterator if the Input Map is changed.

The Delta Engine works in two passes. First, as the Iterator reads through the input data, each
Entry is compared with its corresponding snapshot (if one is found). Based on snapshot
absence or comparison, the Delta Engine returns this data tagged with the relevant operation
codes: add, modify or unchanged. Once End-of-Data is reached by the Iterator, the Delta
Engine makes a second pass through the Delta table looking for those snapshots not accessed
during the first pass. These are then returned as deleted Entries.

You set up Delta Engine parameters in the Delta tab of an Iterator mode Connector.

This tab has the following settings:

Enable Delta This checkbox must be selected in order to turn on the Delta
Engine and give you access to the other parameter settings.

Unique Attribute Name The Input Map Attribute that uniquely identifies each entry in
the snapshot database. Note that you can use an Advanced
Mapped Attribute to combine multiple Attributes to create a
unique value.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 11

Delta Driver This is a backwards-compatibility option which allows you to
access the deprecated BTree Delta store7.

Delta Store Name of the System Store table that will be dedicated to this
Iterator’s Delta snapshot data. The Delete button next to this
parameter will drop the snapshot table, so the next AL run
will create a fresh baseline for delta detection.

Read Deleted Must be selected for the Delta Engine to return deleted
Entries.

Remove Deleted This flag tells the Delta Engine to remove snapshots for
deleted Entries as they are returned.

Return Unchanged If this flag is set then Entries that have not been added,
modified or deleted will be returned. These are tagged with
the operation code unchanged.

Although Delta tables can be access with both the JDBC Connector and the Persistent Entry
Store (PES) Connector, it is unadvisable to make changes without a deep understanding of
how these tables are structured and handled by the Delta Engine (in other words, do so at your
own risk).

2.2.1 Performance and Risk
Although Delta Engine will work with all types of input data sources (as opposed to the
Change Detection Connectors) there are issues associated with the Delta Engine that you need
to be conscious of:

1. The Delta Engine maintains a shadow copy of your input data source. If you have a
large input data set, then the snapshot database will also be big. Running with the
Delta Engine will impact that performance of an AssemblyLine.

2. As opposed to the Changelog Connectors, the Delta Engine is based on iterating
through your entire input dataset. So although you spare target systems from
unnecessary updates, your solution will read extensively from your input source.

3. Should the snapshot database get out-of-synch (for example, if the synchronization AL
fails before changes are propagated to all targets) then this will not be automatically
detected by the Delta Engine8. Instead, you will need to delete the snapshot database
in order to build a new baseline. Note that you should create an AssemblyLine for this
purpose that not only initializes the snapshot database, but also updates targets with
necessary changes. This will require defensive configuration of Delete mode
Connectors to deal with data that is already removed from targets. Additionally,
setting the Compute Changes flag for Update mode Connectors will ensure that only
necessary write operations are performed (see section 4.1.3 Compute Changes on page
24 for more details on Compute Changes).

7 Note that for 6.0 and earlier versions, the “Cloudscape” option in this drop-down indicates that the System
Store will be used, which can easily be configured to use another compliant RDBMS, like DB2, Oracle or
Microsoft SQL Server.
8 Future releases of TDI will help alleviate this potential problem by ensuring that the snapshot database is
updated after the AL has successfully completed its cycle.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 12

2.3 LDIF Parser
The LDIF Parser can be used to both write incremental LDIF output based on Delta operation
code tagging, as well as to read these files and return the corresponding Delta Entries.

An Incremental LDIF file contains only information about changed entries:
version: 1

dn: All Employees
changetype: modify
add: members
members: abnevanm408
-

dn: Coffee Drinkers
changetype: delete
-

The above example has two entries: the first one (with the dn value “All Employees”) signals
that the value “abnevanm408” is added to the members Attribute. The second entry
indicates deletion of the “Coffee Drinkers” entry itself.

Those LDAP Changelog Connectors (like the IBMDirectoryServer Changelog Connector)
that perform Attribute and value tagging use this Parser on the LDIF information kept in the
changelog to do this. To understand what Attribute and value tagging means, continue on to
the next section.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 13

3 Delta Tagging
Delta Tagging is the process of marking retrieved data with delta operation codes (also
referred to as simply “operation codes”), and is typically done during Delta Detection.

Each operation code describes how the information it is attached to has been changed in the
source system. As mentioned previously, Delta Tagging is done by all Change Detection
features. As you will see in section 4 Delta Application, these delta operation codes are used
by TDI to correctly apply changes to target systems. Before we take a look at how tagging is
done by TDI components, we will dig into delta operation codes themselves.

3.1 Delta Operation Codes
In addition to holding Attributes, an Entry object also carries an operation code. This internal
Entry variable is set during Delta Tagging to a value corresponding to the type of change
detected. These operation codes are not visible in the Config Editor, but you can access them
from JavaScript through methods (function calls) found in the Entry object, as shown later in
this section.

An Attribute also has an operation code. This code is analogous to that found in Entry objects,
and indicates whether an Attribute has been added, replaced, deleted, modified or is
unchanged. Furthermore, Attributes keep track of operation codes for the values they contain.
As with the Entry object, an Attribute offers functions for reading and setting its own
operation code, as well as those of its values.

In addition to tagging done automatically by TDI, there are situations where you will want or
need to manipulate these values yourself. For example, when you are getting your change
information from some other source than one of the Delta Detection mechanisms (like
receiving SOAP over IP, or reading messages from a message queue); Or if a TDI component
or feature does not provide the level of delta handling that you require.

3.1.1 Entry Operation Codes
The operation code for an Entry can be accessed directly via the getOp() and setOp()
methods of the Entry object. These function calls use Java char values for the various change
types. These values are defined in the Entry Java class (along with their String equivalents).
The table below is copied from the TDI JavaDocs page for the Entry object:

Field Summary

static char OP_ADD
 The entry contains an entry which is supposed to be added

static char OP_DEL
 The entry contains an entry which is supposed to be removed

static char OP_GEN
 The entry contains an entry with no explicit knowledge of operation

static char OP_MOD
 The entry contains an entry which is supposed to be modified

static char OP_UNCHANGED
 The entry contains an entry which is unchanged

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 14

These codes have the following meanings:

Table 1 - Entry-level Delta Operation Codes

OP_ADD

Signals that the Entry object is new and should be
added to the target(s).

OP_DEL Indicates that the Entry was deleted from the source.

OP_GEN

This code value means that there is no delta tagging
available. This is the default operation code for Entry
objects returned by any other means than from one of
the Delta Detection mechanisms. An Entry with this
operation code is considered untagged and not a Delta
Entry.

OP_MOD

The entry has been modified. This operation code also
implies that there may be more delta tags available for
contained Attributes, and possibly even the Attribute
values (discussed more in detail below).

OP_UNCHANGED

Unlike OP_GEN, this is an actual delta tag that is used
for unmodified Entries. Only some Delta Detection
mechanisms, like the Delta Engine, give you the
option to return Entries with the unchanged code.

As an example, the following JavaScript snippet will write a log message if the Work Entry
has the delete operation code tag:

if (work.getOp() == work.OP_DEL)
 task.logmsg(“Work Entry is tagged for deletion.”);

The pre-defined set of operation code values are easily accessible through any instance of an
Entry object – as with the reference “work.OP_DEL” shown in the above example.

3.1.2 Attribute and Value Operation Codes
Attributes have a similar set of operation codes. Here is the table found at the top of the TDI
JavaDocs page for the Attribute object:

Field Summary
static char ATTRIBUTE_ADD

 Add value

static char ATTRIBUTE_DELETE
 Delete value

static char ATTRIBUTE_MOD
 Values modified

static char ATTRIBUTE_REPLACE
 Replace value

static char ATTRIBUTE_UNCHANGED
 Unchanged

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 15

The meaning of these codes is listed in the table below:

Table 2 – Attribute-level Delta Operation Codes

ATTRIBUTE_ADD

Signals that the Attribute is new and should be
added to the entry in target(s).

ATTRIBUTE_DELETE

Indicates that the Attribute was deleted from the
entry in the source.

ATTRIBUTE_MOD

The Attribute has been modified. This operation
code also implies that there may be more delta
tags available for the values of this Attribute.

ATTRIBUTE_REPLACE

The default operation code for Attributes, this
tag means that the Attribute should be written
as-is, with all values to the target(s) – i.e.
replacing whatever is already there.

ATTRIBUTE_UNCHANGED Signals that this Attribute is unchanged.

These codes are read and written in JavaScript code by using the Attribute methods
setOper() and getOper(). For example, the following script first gets9 the “FullName”
Attribute from the Work Entry and then sets the operation code to modify:

var fullName = work.getAttribute(“FullName”);
fullName.setOper(fullName.ATTRIBUTE_MOD);

Drilling down to the next and final level, Attribute values are tagged with the same set of
codes used for Attributes. The methods for working with value-level delta tags are also found
in the Attribute object – setValueOper() and getValueOper() – both of which
require an index parameter that indicates which value to apply the tag to.

fullName.setValueOper(0, fullName.ATTRIBUTE_DEL);

This snippet sets the operation code for first value10 of the fullName Attribute to delete.

This is a lot of technical information to digest, but keep in mind that TDI will take care of
most operation code tagging and interpretation for you. However, you should at least be
familiar with the details of how this is done in order to handle those situations where the built-
in features fall short of your requirements.

Now that we’ve looked at the various levels of operation code tagging, the next logical step is
to see how these relate to each other.

9 It is important to understand that when you get an Attribute from an Entry (as with the getAttribute() method
as shown in the example above, you actually get a reference to this Attribute – not a copy. So any changes you
make are applied directly to this instance of the Attribute that is stored in the Entry.
10 Indexes in Java, as with many programming languages, start with zero (0). So if an Attribute has four values,
these are accessed as indexes 0, 1, 2 and 3.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 16

3.1.3 Tagging Rules for Delta Operation Codes
Even though an Entry object, its Attributes and their values can all carry different operation
codes, these tag values work together in concert to describe how data has been changed. To
do so, they must all follow the TDI operation code tagging rules:

• If an Entry is tagged as generic, add, delete or unchanged, then its Attributes and their
values will not be tagged with significant operation codes. Although these should be
set to default values, they will regardless be ignored by Delta Application logic.

• If an Entry carries the modify tag, then its Attributes may be tagged as replace, add,
delete or modify.

Furthermore:

o If an Attribute has an operation code of add, delete, replace or unchanged,
then any tags set for its values will be ignored – in other words, all values will
handled by Delta Application logic as indicated by the Attribute’s operation
code.

o If an Attribute has an operation code of modify, then its values must be tagged
as either add or delete.

As you can see, the modify tag has special significance at both the Entry and Attribute level in
that it implies the presence of delta operation codes for objects it contains. However, TDI
does not enforce these rules when you tag data yourself. Delta Application logic provided by
TDI may ignore incorrect operation codes, or even throw an error. More on this in section 4
Delta Application starting on page 21.

3.1.4 Displaying Delta Operation Codes
If you’ve ever used the task.dumpEntry() method, then you’ve probably seen operation
codes without knowing it:

13:32:34 *** Begin Entry Dump
13:32:34 Operation: generic
13:32:34 [Attributes]
13:32:34 members (replace): 'aglessan150' 'alanbrau106'
13:32:34 group (replace): 'Coffee Drinkers'
13:32:34 *** End Entry Dump

The above dump shows that Entry itself tagged as generic11, indicating that it did not originate
from Delta Detection. Since the Entry bucket is tagged with the generic delta operation code,
it is not surprising that the Attributes shown – members and group – have default delta tags
(which for Attributes is replace).

If we dump an Entry received from Delta Detection (in this example, read from an LDIF
Parser) then you can see that the format has not changed; just the codes shown:

13:44:21 *** Begin Entry Dump
13:44:21 Operation: modify
13:44:21 [Attributes]
13:44:21 members: 'abnevanm408'
13:44:21 group (replace): 'Coffee Drinkers'

11 Functions like task.dumpEntry() use the more legible String variants of the delta operation codes. For
example, OP_MOD is displayed as “modify”.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 17

13:44:21 *** End Entry Dump

The Entry shown here carries the modify tag. But while the group Attribute still has the
default replace code, the tag for members is not displayed by dumpEntry(). That is because
the members Attribute has the modify tag, which in turn means that the values it contains are
also tagged. However, the dumpEntry() function is designed to display the contents of an
Entry object in condensed format, not its full delta information.

In order to display all operation codes you can either query these values using the methods
listed in the previous section, or you can get the Entry object to represent itself as a Java
String that includes all delta info. This is done with the Entry’s toDeltaString()
method. As an example, the following snippet will log the delta representation for the Work
Entry:

 task.logmsg(work.toDeltaString());

The resulting output looks like this (after the log timestamp is removed):
modify {
 members {
 type: modify
 count: 3
 values [
 add: abnevanm408
 unchanged: abdaburr393
 unchanged: alanbrau106
]
 }
 group {
 type: unchanged
 count: 1
 values [
 unchanged: Access To The Executive Washroom
]
 }
}

The topmost modify in the above listing is the operation code of the Entry itself. Attributes
contained in this Entry are listed inside a set of curly braces {}.

For each of the Attributes shown here (members and group), further details are displayed
inside additional curly braces. Looking at the members Attribute, the first item listed shows
the operation code of the Attribute (displayed as “type: modify” above). Next comes the
number of values (count: 3) followed by the values themselves, each with its own
operation code.

A shorthand description of the above listing would be “add the value ‘abnevanm408’ to the
‘members’ Attribute of this Entry”.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 18

3.1.5 Manual Delta Code Tagging
Although all Change Detection components and features return information on how data is
changed, tagging of Entries, Attributes and values is not done by all of them12. The following
table lists all Change Detection mechanisms, along with their level of delta code tagging.

Note that although the current set of Changelog Connectors does not provide full tagging of
returned data, an example is included later in this section on how to correct this manually.
This technique takes advantage of the Attribute (named for each Connector in the table
below) that holds this change information.

Table 3 - Change Detection Mechanisms and Tagging Levels

LDIF Parser Tags Entries and Attributes/values.

Delta Engine Tags Entries and Attributes/values.

Note that the Delta Engine will only report a
single change per entry. For example, if this data
has been added, modified and then deleted since
the last iteration, only a single “delete” tagged
Entry is returned.

IBMDirectoryServer
Changelog Connector

Does not tag the Entry (generic tagging), but
does tag Attributes and Attribute values.

Returns type of change in an Attribute called
“changeType” with the value “add”, “modify”
or “delete” (or “rename” for a rdn/$dn change).

Netscape/iPlanet
Changelog Connector

Does not tag the Entry (generic tagging), but
does tag Attributes and Attribute values.

Returns type of change in an Attribute called
“changeType” with the value “add”, “modify”
or “delete” (or “rename” for a rdn/$dn change).

12 Note that future releases of TDI and its Delta Detection components will improve the handling of Delta
Tagging, further harmonizing the way that delta information is returned.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 19

Active Directory
Changelog (v.2) Connector

Does not tag Entries (generic tagging),
Attributes or their values.

Returns type of change in an Attribute called
“changeType” with the value “update” (for both
add and modify) or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

Domino
Change Detection Connector

Does not tag Entries (generic tagging),
Attributes or their values.

Returns type of change in an Attribute called
“$$ChangeType” with the value “add”,
“modify” or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

RDBMS
Changelog Connector

Does not tag Entries (generic tagging),
Attributes or their values.

Returns type of change in an Attribute called
“IBMSNAP_OPERATION” with values “I”
for Inserted (add), “U” for Updated (modify) or
“D” for Deleted (delete).

Exchange
Changelog Connector

Does not tag Entries (generic tagging),
Attributes or their values.

Returns type of change in an Attribute called
“changeType” with the value “update” (for both
add and modify) or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

As shown in the above table, the current set of Changelog Connectors do not tag returned
Entries. But don’t panic. As listed above, they all return an Attribute that describes how data
is changed. Once you have this, it’s easy to set the operation codes yourself.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 20

As an example, consider an AssemblyLine using the IBMDirectoryServer Changelog
Connector. This component returns Entries containing an Attribute called “changeType”,
which is then used in the following script code to set the operation code of the Entry itself13:

if (work.getString(“changeType”) == “delete”)
 work.setOp(work.OP_DEL)
else
if (work.getString(“changeType”) == “add”)
 work.setOp(work.OP_ADD)
else
if (work.getString(“changeType”) == “modify”)
 work.setOp(work.OP_MOD);

Since this Connector does tag Attributes and their values, the manually tagged Work Entry is
now ready to be passed to Delta Application with correct codes in place.

13 Although you can put this code in a Connector Hook (like After GetNext), a better choice is to drop this
snippet in a Script Component that appears in the AL just after the Changelog Iterator. By naming this Script
Component descriptively, for example “PerformDeltaTagging”, your AssemblyLine becomes easier to read and
maintain. Furthermore, this scripted tagging can easily be identified and removed once an enhanced version of
the Changelog Connector becomes available.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 21

4 Delta Application
Regardless of how you get hold of change information, the ultimate goal is to apply the delta
to one or multiple targets.

Writing to data sources is done with the appropriate Connector in one of the output modes:
AddOnly, Update, Delete or Delta. When using AddOnly, Update or Delete modes, it is up to
you to set up the AssemblyLine flow logic so that the correct data operation is performed
depending on the type of changes reflected in the Delta Entry. Delta mode on the other hand
does this for you. However, only the LDAP Connector supports this mode.

4.1.1 Manual Delta Application
Without the option of Delta mode, the AssemblyLine must be set up to differentiate between
add/modify and delete change types. If the Connector you plan to use for output supports
Update mode, then this will deal with both add and modify changes for you. Deleting data is
the job of Delete mode.

Configuring your AssemblyLine to handle add, modify and delete operation codes can be
done in a number of ways. Note the first method makes use of the Branch component in TDI
6.0, and is best practice for building legible, maintainable solutions. The other two approaches
are included here for the sake of completeness, and to help you decipher Configs built with
earlier versions.

Branches Your AssemblyLine will need two Branches. One will have the
following Condition:

 changeType EQUALS delete

where changeType above is the name of the Attribute that
carries this information, and delete is literal string value in this
Attribute that indicates a deleted Entry.

If the delta operation tag of the Entry has been set, you could
alternatively check this instead, but then you would need to
script the Condition like this:

ret.value = work.getOp() == work.OP_DEL

Under this Branch you have your Delete mode Connector to
remove entries from the connected system.

Just after the above Branch you will have another one with the
reciprocal Condition, for example:

ret.value = work.getOp() != work.OP_DEL

and nested under this Branch will be your Update mode
Connector.

Before Execute Hook This Hook is present in every Connector, regardless of mode. If
enabled, the Hook script is executed on each AL cycle before
any other action is taken by this component.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 22

So one pre-6.0 approach is using the Before Execute Hook to
conditionally ignore the current Entry if the change type is
inappropriate for the mode of this Connector:

if (!work.getString(“changeType”).equals(“delete”))

 system.ignoreEntry();

The above example script would be in the Before Execute
Hook of a Delete mode Connector, and would pass control to
the next component if the Attribute called changeType did not
have the value “delete”.

Script Component (SC) Another common pre-6.0 tactic was to set up a Connector in
Passive state, with the correct Output Map and Link Criteria.
Passive State ensures that the Connector is initialized at AL
startup and closed when the AssemblyLine terminates, but not
executed automatically during AL cycling. Instead, the
Connector is manually called from a Script Component.

if (work.getString(“changeType”).equals(“delete”))

 targetConnector.deleteEntry(work)
else
 targetConnector.update(work);

This snippet drives a Connector called “targetConnector”14,
using either the deleteEntry() or update() method as needed.

Note that this can be done from any block of script, like a Hook
or a scripted Connector. However, placing this kind of flow
logic in an SC makes your AssemblyLine more legible.

Prior to the advent of Delta mode in version 6.0, these were the methods available for
applying delta to target systems.

4.1.2 Delta Mode
Delta Mode not only combines Update and Delete mode handling (including offering many of
the same Hooks), it will also perform incremental modify operations to LDAP directories.
This can represent a significant performance improvement since load on the LDAP Server and
network is minimized, especially when working with group membership or other massively
multi-valued Attributes.

In order for Delta Mode to work, the Connector must receive a Delta Entry (e.g. with an
operation code value other than generic). This is the only mode that requires (and uses) these
delta tags, and highlights a basic difference in how Update and Delta modes function.

Update mode differentiates between add and modify operations by first performing a lookup
using the Connector’s Link Criteria. If a match is found then the Connector modifies this

14 All AssemblyLine Components are automatically registered as script variables, which is why it is important to
name them as you would a variable.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 23

entry. Should the lookup fail to find matching data, a new entry is added. In other words,
changes are applied based on the current state of the target system.

Delta mode on the other hand “assumes” that the source and target were previously in sync,
and that any differences are encapsulated in the Entry object. One side-effect is that delta
information must be applied in the same order as it occurred in the source. This is not a
problem when the Delta Detection mechanism used only provides a single change per entry,
as with the Domino Change Detection Connector. (see

Table 3 - Change Detection Mechanisms and Tagging Levels on page 14 for more details).

Which operation codes Delta mode should handle, as well as how it deals with unwanted
entries, is configured by pressing the Delta button15 at the top of the Connector Details panel.

This brings up the Permitted Delta Operations dialog.

If the checkbox at the bottom of the panel shown above is unselected, then the Connector will
simply ignore Entries tagged as generic, passing control to the next component. Otherwise, it
results in an error; i.e. an exception is thrown and must be handled in an Error Hook or the
AssemblyLine will stop.

In addition to simplifying data synchronization AssemblyLines, Delta Mode also makes the
most effective use of your LDAP server when performing delta operations. Instead of first
retrieving the entire entry to be modified, applying changes and then writing all this data back
to the target (like Update mode does), only the changes prescribed by the Attribute and value
operation codes are sent directly to the LDAP directory. A common scenario where this

15 This button only appears to be a button when you move the mouse over it.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 24

improved functionality is important is when changing group memberships, where you are
typically adding or removing values from large multi-valued Attributes.

4.1.3 Compute Changes
No treatise on data synchronization with TDI would be complete without a note on the
Compute Changes option.

This flag is available for Update mode, and instructs TDI to compare the Attributes in the
Output Map with the corresponding ones read into the current Entry object by the lookup
operations. If no differences are detected, then the modify operation is not carried out.

Using this option is an easy way to avoid triggering the replication features in your target
system due to unnecessary changes.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 25

5 Conclusion
So there you have it, or at least a piece of it. As is the nature of development tools, there are
multiple approaches to building synchronization solutions. In addition to the topics covered
here, the adventurous user can extend TDI’s integration reach by creating new components (in
Java or JavaScript) and leveraging vendor-specific functionality available in your systems. Or
making calls to these APIs directly from Script code in your AssemblyLines.

Whether you use the Delta Handling features in TDI for Delta Detection/Tagging, Delta
Application or both, they provide building blocks for laying the foundation of your solution
faster.

TDI How To Synchronizing Data Tivoli Directory Integrator

9 Sep 2005 26

6 References
1. Getting Started. Part of the official TDI documentation. See

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBM
DI.doc/gettingstarted.htm

