
Tivoli®

IBM Tivoli Directory Integrator 6.1.1:

Getting Started Guide

GI11-6480-01

���

Tivoli®

IBM Tivoli Directory Integrator 6.1.1:

Getting Started Guide

GI11-6480-01

���

Note

Note: Before using this information and the product it supports, read the general information under Appendix B, “Notices,”

on page 75.

Second Edition (February 2007)

This edition applies to version 6.1.1 of the IBM Tivoli Directory Integrator and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Preface

This document introduces conceptual information about IBM® Tivoli® Directory

Integrator and provides examples to help you get started with the product.

Who should read this book

This book is intended for system administrators and users and anyone interested

in learning more about IBM Tivoli Directory Integrator.

Publications

Read the descriptions of the IBM Tivoli Directory Integrator library and the related

publications to determine which publications you might find helpful. After you

determine the publications you need, refer to the instructions for accessing

publications online.

IBM Tivoli Directory Integrator library

The publications in the IBM Tivoli Directory Integrator library are:

IBM Tivoli Directory Integrator 6.1.1: Getting Started

A brief tutorial and introduction to IBM Tivoli Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Administrator Guide

Includes complete information for installing the IBM Tivoli Directory

Integrator. Includes information about migrating from a previous version

of IBM Tivoli Directory Integrator. Includes information about configuring

the logging functionality of IBM Tivoli Directory Integrator. Also includes

information about the security model underlying the Remote Server API.

IBM Tivoli Directory Integrator 6.1.1: Users Guide

Contains information about using the IBM Tivoli Directory Integrator 6.1.1

tool. Contains instructions for designing solutions using the IBM Tivoli

Directory Integrator tool (ibmditk) or running the ready-made solutions

from the command line (ibmdisrv). Also provides information about

interfaces, concepts and AssemblyLine/EventHandler creation and

management. Includes examples to create interaction and hands-on

learning of IBM Tivoli Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Reference Guide

Contains detailed information about the individual components of IBM

Tivoli Directory Integrator 6.1.1 AssemblyLine (Connectors, EventHandlers,

Parsers, Plug-ins, and so forth).

IBM Tivoli Directory Integrator 6.1.1: Problem Determination Guide

Provides information about IBM Tivoli Directory Integrator 6.1.1 tools,

resources, and techniques that can aid in the identification and resolution

of problems.

IBM Tivoli Directory Integrator 6.1.1: Messages Guide

Provides a list of all informational, warning and error messages associated

with the IBM Tivoli Directory Integrator 6.1.1.

IBM Tivoli Directory Integrator 6.1.1: Password Synchronization Plug-ins Guide

Includes complete information for installing and configuring each of the

five IBM Password Synchronization Plug-ins: Windows Password

© Copyright IBM Corp. 2003, 2007 iii

Synchronizer, Sun ONE Directory Server Password Synchronizer, IBM

Directory Server Password Synchronizer, Domino Password Synchronizer

and Password Synchronizer for UNIX® and Linux®. Also provides

configuration instructions for the LDAP Password Store and MQe

Password Store.

IBM Tivoli Directory Integrator 6.1.1: Release Notes

Describes new features and late-breaking information about IBM Tivoli

Directory Integrator 6.1.1 that did not get included in the documentation.

Related publications

Information related to the IBM Tivoli Directory Integrator is available in the

following publications:

v IBM Tivoli Directory Integrator 6.1.1 uses the JNDI client from Sun

Microsystems. For information about the JNDI client, refer to the Java™ Naming

and Directory Interface™ 1.2.1 Specification on the Sun Microsystems Web site at

http://java.sun.com/products/jndi/1.2/javadoc/index.html.

v The Tivoli Software Library provides a variety of Tivoli publications such as

white papers, datasheets, demonstrations, redbooks, and announcement letters.

The Tivoli Software Library is available on the Web at: http://www.ibm.com/
software/tivoli/library/

v The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available on the

World-Wide Web, in English only, athttp://publib.boulder.ibm.com/tividd/
glossary/tivoliglossarymst.htm

Accessing publications online

The publications for this product are available online in Portable Document Format

(PDF) or Hypertext Markup Language (HTML) format, or both in the Tivoli

software library: http://www.ibm.com/software/tivoli/library.

To locate product publications in the library, click the Product manuals link on the

left side of the Library page. Then, locate and click the name of the product on the

Tivoli software information center page.

Information is organized by product and includes READMEs, installation guides,

user’s guides, administrator’s guides, and developer’s references as necessary.

Note: To ensure proper printing of PDF publications, select the Fit to page check

box in the Adobe Acrobat Print window (which is available when you click

File->Print).

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. With this product,

you can use assistive technologies to hear and navigate the interface. After

installation you also can use the keyboard instead of the mouse to operate all

features of the graphical user interface.

iv IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/tivoli/library/

Contacting IBM Software support

Before contacting IBM Tivoli Software support with a problem, refer to IBM System

Management and Tivoli software Web site at:

http://www.ibm.com/software/sysmgmt/products/support/

If you need additional help, contact software support by using the methods

described in the IBM Software Support Handbook at the following Web site:

http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

v Registration and eligibility requirements for receiving support

v Telephone numbers and e-mail addresses, depending on the country in which

you are located

v A list of information you must gather before contacting customer support

Preface v

http://www.ibm.com/software/sysmgmt/products/support/
http://techsupport.services.ibm.com/guides/handbook.html

vi IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Contents

Preface iii

Who should read this book iii

Publications iii

IBM Tivoli Directory Integrator library iii

Related publications iv

Accessing publications online iv

Accessibility iv

Contacting IBM Software support v

Chapter 1. Introduction 1

About this manual 1

Scripting in JavaScript 2

Installing IBM Tivoli Directory Integrator 2

Installing the tutorial files 2

Chapter 2. Simplify and solve 3

How do you eat an elephant? 3

Integration is communication 3

Architecture 6

AssemblyLines 7

Connectors 9

Parsers 10

Chapter 3. Introducing IBM Tivoli

Directory Integrator 11

Rapid integration development 11

Creating a new Config 12

Creating an AssemblyLine 14

Adding the Input Connector 19

Mapping Attributes Into The AssemblyLine . . . 27

Adding the Output Connector 36

Running your AssemblyLine 40

Working with Hooks 44

Schema conversion 47

Adding the Join Connector 49

Setting up Link Criteria 52

Event-driven Integration 58

Final thoughts 71

Appendix A. index.html and

OtherPage.html 73

index.html 73

OtherPage.html 73

Appendix B. Notices 75

Trademarks 77

© Copyright IBM Corp. 2003, 2007 vii

viii IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Chapter 1. Introduction

About this manual

This book is a simple introduction to a simple system. Make no mistake, the word

simple is used here in its most positive and powerful context, because the best

way to wrap your mind around a complex problem is to simplify it. Break it down

into more manageable pieces, and then master those constituent parts. Divide and

conquer. This is a technique that you instinctively use to solve everyday problems,

and which is equally relevant for engineering information exchange across an

office, an enterprise or the globe.

IBM Tivoli Directory Integrator is designed and built on the premise that

integration problems can be broken down into three parts:

v The systems involved in the communication

v The data flows between these systems

v The events which trigger the data flows

With IBM Tivoli Directory Integrator you turn this atomic understanding of the

integration problem directly into the solution. You can build your solution

incrementally, one flow at a time, with continuous feedback and verification.

This means that integration projects become easier to estimate and plan. Sometimes

planning can even be reduced to simply counting and determining the cost of the

individual data flows to be implemented. And since you are developing the

solution flow-by-flow visually and interactively, you can report (and demonstrate)

progress to both project and corporate management at any time.

IBM Tivoli Directory Integrator manages the technicalities of connecting to and

interacting with the various data sources that you want to integrate, abstracting

away the details of their APIs, transports, protocols and formats. Instead of

focusing on data, IBM Tivoli Directory Integrator lifts your view to the information

level, enabling you to concentrate on the transformation, filtering and other

business logic required to perform each exchange.

IBM Tivoli Directory Integrator enables you to build libraries of components and

business logic that can be maintained, extended and reused to address new

challenges. Development projects across your organization can all share IBM Tivoli

Directory Integrator assets, resulting in independent projects (even point solutions)

that immediately fit into a coherent integrated infrastructure.

This approach results in a more rational and predictable use of resources, as you

bring your data source and technology experts in at the very start of a project in

order to set up your libraries. When in place, these integration assets are available

across the network, letting you leverage them to create new solutions and enhance

existing ones.

This document gives you an introduction to this approach, as well as information

about how to tap into the radical and elegant simplicity of IBM Tivoli Directory

Integrator .

© Copyright IBM Corp. 2003, 2007 1

Scripting in JavaScript

IBM Tivoli Directory Integrator provides an elegant and intuitive point-and-shoot

environment for rapidly building the framework of your integration solution.

However, you might soon want to add more advanced data manipulation and

transformation logic, as well as business rules for filtering your data and

controlling the behavior of your data flows. All of this is done by writing script in

your solution.

Scripting is done in JavaScript, and TDI includes the IBM jsEngine to provide a

fast, reliable scripting environment.

Note: It is no longer possible to choose the scripting language for a component or

AssemblyLine. Scripting is always done in JavaScript.

For more information about scripting in IBM Tivoli Directory Integrator, see the

IBM Tivoli Directory Integrator 6.1.1: Users Guide.

Installing IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator is light-footed, rapidly deployed integration

middleware. Unlike traditional middleware, IBM Tivoli Directory Integrator installs

in minutes and you can begin building, testing and deploying solutions

immediately. The system runs on a wide variety of platforms, including Windows®

and a number of UNIX and Linux versions.

For more information about installing the IBM Tivoli Directory Integrator , please

see ″IBM Tivoli Directory Integrator installation instructions″ in the IBM Tivoli

Directory Integrator 6.1.1: Administrator Guide.

Installing the tutorial files

To work through the examples in this manual, you need to create a Config File to

work with. See “Creating a new Config” on page 12 for directions on how to create

a Config File.

Supporting data files to use with the Config File are located in the

root_directory/examples directory in the installation directory.

root_directory indicates the directory where IBM Tivoli Directory Integrator is

installed1.

1. During the install process you are asked to specify the location of your solutions directory. This is where you will keep your own

work, and will typically be a sub-directory under your home area. However, if you are upgrading from a version older than 6.0,

this will typically set to the installation root_directory.

2 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Chapter 2. Simplify and solve

How do you eat an elephant?

The answer is, one bite at a time. This is also the best approach for digesting large

integration and systems deployment projects.

The key to success is to reduce complexity by breaking the problem up into

smaller, manageable pieces. This means starting with a portion of the overall

solution, preferably one that can be completed in a week or two. Ideally, this is a

piece that can be independently put into production. That way, it’s already

providing return on investment while you tackle the rest of the solution.

When you have isolated the piece you are going to work with, simplify it further

by focusing in on the basic units of communication (the data flows themselves).

You are now poised to start implementing them.

Integration development is done with IBM Tivoli Directory Integrator through a

series of try-test-refine cycles, making the process an iterative, even exploratory

one. This not only helps you to discover more about your own installation, but

also lets you grow your integration solution as your understanding of the problem

set and its impact on your infrastructure grows.

A great way to get a good mental picture of the problem at hand is to make a

picture of it. Using a pencil and a piece of paper, sketch out a flow diagram that

maps out the solution in broad strokes. This exercise not only helps you to

visualize the scope of the task, it serves as a blueprint for implementing the task in

IBM Tivoli Directory Integrator.

Integration is communication

Integration problems are all about communication, and as such can typically be

broken down into three basic parts:

v The systems and devices that communicate

v The flows of data between these systems

v The events that trigger the data flows

These constituent elements of a communications scenario can be described as

follows:

Data Sources

These are the data repositories, systems and devices that talk to each other.

For example:

v The Enterprise Directory you’re implementing or trying to maintain

v Your CRM application

v The office phone system

v The Access database with the list of company equipment and to whom

the equipment has been issued

Data sources represent a wide variety of systems and repositories, such as

databases (for example, DB2®, Oracle, SQL Server), directories (for

example, iPlanet, IBM Directory Server, Domino™, eDirectory and Active

Directory), directory services (Exchange), files (for example, XML, LDIF or

© Copyright IBM Corp. 2003, 2007 3

SOAP documents), specially formatted e-mail, or any number of interfacing

mechanisms that internal systems and external business partners use to

communicate with your information assets and services.

Data Flows

 These are the threads of the communications and their content, and are

usually drawn as arrows which point in the direction of data movement.

 Each data flow represents a communication between two or more systems.

 However, for a conversation to be meaningful to all participants, everyone

involved must understand what is being communicated. You can probably

expect the data sources to represent their data content in different ways.

One system might represent a telephone number as textual information,

including the dashes and parentheses used to make the number easier to

read. Another system might store the telephone numbers as numerical

data.

 If these two systems are to communicate this data, then the information

must be translated during the conversation. Furthermore, the information

in one source might not be complete, and might need to be augmented

with attributes from other data sources. Furthermore, only parts of the data

in the flow might be relevant to receiving systems.

 Therefore a data flow must also include the mapping, filtering and

transformation of information, shifting its context from input sources to

that of the destination systems.

Events

 Events can be described as the circumstances dictate when one set of data

sources communicates with another. One example is whenever an

employee is added to, updated within or deleted from the HR system.

Another example is when the access control system detects a keycard being

used in a restricted area. An event can also be based on a calendar or a

clock-based timer, for example, starting communications at every 10

minutes, or at 12:00 midnight on Sundays. It can also be a manually

initiated one-off event, such as populating a directory or washing the data

in a system.

 Events are usually tied to a data source, and are related to the data flows

that are triggered when the specified set of circumstances arise.

 These elements are all handled by the IBM Tivoli Directory Integrator component

called a Connector2. Connectors are components that connect to and access data in a

data source. For example, you can use a JDBC Connector to read and write to an

SQL database, or an LDAP Connector to access directory information. Connectors

can also be set up to handle events from a data source; like changes in a directory

or database, mail arriving in a mailbox and messages appearing in a message

queue.

Some types of data sources do not store data as structured objects (records, entries,

and so forth). Instead, data is represented as a byte stream. Two examples are data

over IP and flat files. That’s where a second type of component called a Parser is

necessary. By attaching a Parser to a Connector that is working with an

2. In addition to Connectors, IBM Tivoli Directory Integrator provides a number of other components, like Functions and Scripts.

However, only Connectors, Parsers and EventHandlers will be covered in this text.

4 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

unstructured data source, byte streams are converted structured information

during input operations, and structured information into byte streams on output.

Before diving deeper into how these components work, lets start working on an

example. The first order of business is to get an overview of the data flows you

want to implement. As mentioned previously, a good way to do this is to create a

flow diagram3.

In this example, an output data source (DS3) will receive data from an input data

source (DS1). Along the way, the data flow will aggregate from a second input data

source (DS2) — also called a join operation. In IBM Tivoli Directory Integrator, the

implementation of such a data flow is referred to as an AssemblyLine.

It’s important to understand that each AssemblyLine implements a single

uni-directional data flow. If you want to do bi-directional synchronization between

two or more data sources, then you should use a separate AssemblyLine for

handling the flow in each direction. The reason for this is that the form and

content of the data, as well as the operations carried out on it, most likely are

different for each direction4.

Note: IBM Tivoli Directory Integrator provides everything needed to create

request-response information solutions such as Web Services. This type of

bi-directional data flow is supported by built-in AssemblyLine behavior.

Although there are no limits to the number of Connectors that an AssemblyLine

can contain, the AssemblyLines should contain as few Connectors as possible (for

example, one per data source participating in the flow). This is a best practice:

keeping AssemblyLines as short and simple as possible. At the same time, you

need to include enough components and script logic to make the AssemblyLine as

autonomous as possible. The reasoning behind this is to make the AssemblyLine

easy to understand and maintain. It also results in simpler, faster and more

scalable solutions.

The IBM Tivoli Directory Integrator philosophy is about dealing with the flows one

at a time, as well as building your solution incrementally. So instead of attacking

the entire problem at once, let’s start with the just a data flow going from DS1 to

DS3.

How data is organized can differ greatly from system to system:

v Databases typically store information in rows typically with a fixed number of

columns.

v Directories, on the other hand, work with variable objects called entries.

v Message Queues deliver information as messages.

v Other systems represent data as records, objects, byte streams or key-value pairs.

IBM Tivoli Directory Integrator simplifies this issue by normalizing the way data is

represented inside your AssemblyLine. This means that regardless of where the

3. There are many diagramming conventions and styles available to choose from, but the actual shape and type of symbols is less

important than your understanding of the problem. Use boxes or balls or bubbles or whatever you’re comfortable with, but be

consistent and be sure to label everything clearly and legibly. That way, when you look at your diagram in a couple of months (or

when someone else does), it still makes sense.

4. This is a best practice with IBM Tivoli Directory Integrator, and is supported by built-in behaviors of the system. However, since

everything can be changed and controlled via JavaScript code, you can override built-in flow control to implement pretty much

what you want.

Chapter 2. Simplify and solve 5

information comes from, or how it is stored in your data sources, it is handled

inside the system in a canonical format: Java objects. Each component knows how

to marshal data between its data source’s native types and their corresponding

Java representation. This makes working with the data a lot easier, since you don’t

have to worry about type conflicts when doing data comparisons and

computations.

Getting back to the exercise, your output data source (DS3) has a schema of five

attributes: First, Last, FullName, Title and Mail. The input data source (DS1)

provides you with only three attributes: First, Last and Title. You need to complete

the design of your data flow by deciding how the attributes provided by DS1 are

mapped (and possibly transformed) to provide those required by DS3:

 DS3.First =DS1.First

 DS3.Last =DS1.Last

 DS3.FullName =DS1.First+" "+DS1.Last

 DS3.Title =DS1.Title

 DS3.Mail =<compute from DS1.FullName>

The above specification indicates that while three of the attributes needed by DS3

(First, Last and Title) can be directly mapped from DS1, the two remaining ones

will need to be computed. This mapping specification will be implemented directly

in your IBM Tivoli Directory Integrator solution, as you will see soon.

To keep this example simple, a comma-separated text file will serve as DS1. It will

contain the fields First, Last and Title. The output data source (DS3) will be an

XML document that your solution will create.

Now that you have a good representation of the solution and understand how IBM

Tivoli Directory Integrator deals with data, let’s take a look at how data flows are

handled by the system.

Architecture

The architecture of IBM Tivoli Directory Integrator is divided into two parts:

v The kernel, where most of the system’s functionality is provided, and which you

leverage to quickly build the framework of your solution.

v The components, which abstract away the technical details of the data systems,

platforms and formats that you want to work with. IBM Tivoli Directory

Integrator provides you with a number of components types, although this

manual will be focusing on two: Connectors and Parsers. Connectors are the

main type of component, and they tie your data flow to the outside world.

Parsers are used to translate byte streams into structured data, or vice versa,

allowing your Connectors to access files and message queues, as well as

communicate using IP protocols.

IBM Tivoli Directory Integrator has a rich component library for you to work with,

each of them specialized to handle a particular API, protocol or format. In addition

to this data source specific ″intelligence″, components are wrapped with kernel

functionality that harmonizes their behavior and does much of the ″heavy-lifting″

in your solution. As a result, components become not only easy to configure and

use, but also interchangeable. And the components themselves can remain

relatively simple in design and implementation, making it easy to extend them and

build new ones — either by writing them in Java, or directly in the IBM Tivoli

Directory Integrator development environment (called the Config Editor, or CE for

short) using JavaScript.

6 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

As you will see, this kernel/component design philosophy is a core concept in

IBM Tivoli Directory Integrator. While specialized component technology gives you

access to a broad range of systems and devices, the generic functionality of the

kernel lets you rapidly build the framework of your solutions by selecting relevant

components and clicking them into place. Furthermore, components are

interchangeable and can be swapped out without affecting the customized logic

and configured behavior of your data flows. Your integration solutions become

agile and extensible, making them less vulnerable to changes in the underlying

infrastructure.

Another central architectural concept in IBM Tivoli Directory Integrator is how it

collects and stores information in a powerful and flexible data container called an

Entry. Entries are objects that can be thought of as ″Java buckets″ used to carry

information about a single data entity, like a database row, directory entry or MQ

message.

Entries can hold any number of Attributes, which in turn store the actual data

values themselves.

As an example, consider an Entry representing a row in a database table called

″Cars″. This Entry would have an Attribute for each column in the table, like

″Make″, ″Model″, ″Manufactured″ and ″Owners″. These attributes would in turn

contain the data values stored in the row: for example, ″Volkswagen″, ″Caravelle″,

1997 and Bill Sanderman. As mentioned above, these Attribute values are stored as

Java objects, converted from native database types by the Connector you used to

read the data. So while the Attributes above called ″Make″, ″Model″ and ″Owners″

contained string values (java.lang.String), ″Manufactured″ is represented as a date

(java.util.Date).

Some data sources (like directories) support multiple values for a single attribute.

IBM Tivoli Directory Integrator Attributes can also hold any number of values5. In

the example outlined above, the car in question could have a history of owners,

represented by multiple string values stored in the ″Owners″ Attribute.

As stated above, this Entry->Attribute(s)->value(s) concept is core to

understanding and using with IBM Tivoli Directory Integrator. Whenever you deal

with data inside your AssemblyLine, you will be working with Entries and

Attributes (and their values).

AssemblyLines

The data flow arrows in your solution diagram translate in IBM Tivoli Directory

Integrator to AssemblyLines. The AssemblyLine itself is an ordered list of

components that forms a single path of data transfer and transformation in your

solution. Built-in behavior provided by the kernel ties the components together

and passes data from one to the next. As you probably guessed, this is where the

AssemblyLine name comes from: real-world industrial assembly lines.

Real-world assembly lines are made up of a number of specialized machines that

differ in both function and construction, but have one significant attribute in

common: they can be linked together to form a continuous path from input sources

to output targets.

5. Furthermore, since a value can be any type of Java object, even another Entry, you can work with hierarchical data sets.

Chapter 2. Simplify and solve 7

An assembly line generally has one or more input units designed to feed the

production process with raw materials: for example, fish fillets, cola syrup, car

parts, and so forth. These ingredients are processed and refined, carried from one

unit to the next by some transport mechanism like a conveyor belt or pipes.

Sometimes by-products are extracted from the assembly line along the way. At the

end of the line, finished goods are delivered for to output bins for stacking, storage

or distribution.

If a production crew gets the order to produce something else, they break the line

down, keeping the machines that are still relevant to the new order. New units are

connected in the right places, the line is adjusted and production starts again. IBM

Tivoli Directory Integrator AssemblyLines work in much the same way.

IBM Tivoli Directory Integrator AssemblyLines are fed information from various

input units (Connectors), perform operations on this data and then convey the

finished product to target systems through output units (also Connectors). IBM

Tivoli Directory Integrator AssemblyLines process on one item at a time: for

example, one database row, directory entry, MQ message, and so forth. Just like

real-word assembly lines, IBM Tivoli Directory Integrator AssemblyLines need

some ″conveyor belt″ mechanism for moving data down the flow.

Data transport within the AssemblyLine is done by storing data attributes read

from the connected input sources into an Entry object (the ″Java bucket″ mentioned

previously) called the work Entry object. The work object is passed between

AssemblyLine components which in turn perform work on the information it

contains — for example, joining in additional data, verifying content, computing

new attributes and values, as well as changing existing ones — until the data is

ready for delivery to one or more target systems.

 It’s said that a picture is worth a thousand words, and the above diagram is no

exception. Start with the three puzzle pieces which represent Connectors linked

together to form an AssemblyLine. The darker ″stem″ of each puzzle piece

highlights the data source specific part of the Connector; i.e. the component part

8 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

that is connected to some system or device, and which has the ″intelligence″ to

work with a particular API or protocol. The rest of each puzzle piece is the generic

functionality of the Connector provided by the kernel. This AssemblyLine

″wrapper″ makes components work in a similar and predictable fashion. It enables

AssemblyLine components to be linked together, as well as providing built-in

behaviors and control points for customization. As you can see, every

AssemblyLine component reflects the kernel/component architecture of IBM Tivoli

Directory Integrator.

In addition to the work object used by the AssemblyLine to move data down the

flow, the diagram also shows an additional ″Java bucket″ nestled in each of the

Connectors. These local storage objects are used to cache data during read and

write operations. A Connector’s local Entry object is call its conn object, and exists

only within the context of the Connector. When a Connector reads in information,

it converts the data to Java objects and stores it in the local conn object. During

output, the Connector takes the contents of its conn, converts this data to native

types and sends to the target system.

However, since each conn object is only accessible by its Connector, an additional

mechanism is needed to move data from these localized caches to the shared work

object after Connector input — and the other direction for output Connectors. The

above diagram shows arcing arrows that illustrate this movement of Attributes

between the Connectors’ local conn Entries and the AssemblyLine’s work object.

The process is called Attribute Mapping and will be detailed later. Suffice to say that

Attribute Maps are your instructions to a Connector on which Attributes are to

brought into the AssemblyLine during input, or included in output operations.

Keep this image handy, as it will help you to understand exactly how the

AssemblyLine you are going to build actually works.

Connectors

Connectors are the puzzle pieces that you click together to build your

AssemblyLine. Each one is designed to tie a specific data source to your data flow.

Each time you select one of these puzzle pieces and add it to an AssemblyLine,

you must do the following:

1. Choose the type of Connector to use and configure it.

2. Assign the Connector its role in the data flow so that the built-in automated

behavior of the AssemblyLine can power the Connector for you. This is called

the Connector Mode setting, and is determines whether you are want:

v an input Connector iterating through or looking up information in its source;

v an output Connector, inserting, updating or deleting data in the connected

system or device.

You can change both the type and mode of a Connector at any time in order to

meet changes in your infrastructure, or in the goals of your solution. If you’ve

planned for this eventuality, then the rest of the AssemblyLine is not impacted.

That’s why it’s important to treat each Connector as a black box that either delivers

data into the mix, or extracts some to send to an output target. The more

independent each Connector is, the easier your solution is to augment and

maintain.

By making your Connectors as autonomous as possible, you can also readily

transfer them to your Connector Library and reuse them to create new solutions

Chapter 2. Simplify and solve 9

faster — even sharing them with colleagues. Using the IBM Tivoli Directory

Integrator library feature also makes maintaining and enhancing your Connectors

easier. Whenever you update the Connector template in your library, all

AssemblyLines derived from it inherit these changes and enhancements.

IBM Tivoli Directory Integrator gives you a rich selection of Connectors to choose

from: such as LDAP, JDBC, Microsoft® NT4 Domain, Lotus® Notes® and

POP3/IMAP to name a few. And if you can’t find the one you are looking for, you

can extend an existing Connector by overriding any or all of its functions using

JavaScript™. You can even create your own with either JavaScript, or with a

traditional development language like Java or C/C++.

IBM Tivoli Directory Integrator also supports most transport protocols and

mechanisms, such as TCP, SNMP, FTP, HTTP and JMS (MQ), allowing you to take

advantage of the technologies available in your infrastructure.

Parsers

Even unstructured data (such as text files or data coming over an IP port) is

handled quickly and simply with IBM Tivoli Directory Integrator by passing the

byte stream through one or more Parsers. Parsers are another type of IBM Tivoli

Directory Integrator component, and the system includes a variety of Parsers, such

as LDIF, DSML, XML, CSV and Fixed-length field. And just like Connectors, you

can extend and modify these, as well as create your own.

Continuing with the example from page 6, the next step is to identify the data

sources. Since the input data source is a text file in comma-separated value format,

you use the File System Connector paired up with the CSV Parser. Use a File

System Connector for output as well, but this time choose the XML Parser in order

to format the file as an XML document.

Note: The examples in this manual have been created on a UNIX platform, and

use the UNIX path name conventions. In order for your solution to be

platform independent, use the forward slash (/) instead of the backslash

character (\) in your path names, for example, examples/Tutorial/
Tutorial1.cfg. This works on both Windows and UNIX/Linux platforms.

 Before you continue, you must have an input file. You can find an example of such

a file in the examples/Tutorial sub-directory in the directory where the IBM Tivoli

Directory Integrator was installed, or you can create your own with a text editor.

The included sample data looks like the following:

First;Last;Title

Bill;Sanderman;Chief Scientist

Mick;Kamerun;CEO

Jill;Vox;CTO

Roger

Gregory;Highpeak;VP Product Development

Ernie;Hazzle;Chief Evangelist

Peter;Belamy;Business Support Manager

This file should be called People.csv. Once it is in place, you are ready to build

your solution using IBM Tivoli Directory Integrator.

10 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Chapter 3. Introducing IBM Tivoli Directory Integrator

Rapid integration development

IBM Tivoli Directory Integrator is actually two programs:

Config Editor (or CE for short)

 This program gives you a graphical interface to create, test and debug your

integration solutions. The CE is an Integrated Development Environment

(IDE) used to create a configuration file that describes your solution, and is

powered by the runtime Server. This configuration is called a Config, hence

the name Config Editor. The CE executable file is ibmditk.

Server

 By reading and interpreting the Config you created with the CE, the Server

is able to power your integration solution. The Server program file is

ibmdisrv, and you will typically deploy your solution by using a single

Server instance (although you can have as many Servers as you want,

running separately or in concert).

Start the Config Editor. After a moment you are presented with the Main Screen.

At this point you can create your new Config.

Note: If the screen you see is different from the screenshots in this manual, your

system might have a different display setting. Do the following to change

the display setting:

1. Click File->Edit Preferences.

2. Click the Appearance tab.

3. Click the Look & Feel tab.

The IBM Tivoli Directory Integrator window is resizeable, as well as the

various details panes within the program window. The File->Edit

Preferences selection opens a dialog where you can set a number of other

user interface parameters, such as whether you want a tabbed Browser or

Details display, the main button toolbar visible or not, or if you want IBM

Tivoli Directory Integrator to show the Status Bar at the bottom of the

window.

At the top of the screen is the Main Menu and the Main Toolbar.

© Copyright IBM Corp. 2003, 2007 11

The Main Toolbar provides commands for creating new Configs, opening existing

ones and saving your current work, as well as buttons for window navigation and

Help. These same commands are also available under the File and Window

menus, where you also find the Save As selection for saving your configuration to

a new filename6.

Creating a new Config

IBM Tivoli Directory Integrator Configs are stored as XML documents. They are

created and maintained in the Config Editor and deployed with the Server. Each

Config contains the AssemblyLines that a Server runs, as well as the IBM Tivoli

Directory Integrator components that make up these lines.

Note: Configs can also be spread over several files and stored at several locations.

IBM Tivoli Directory Integrator assembles its configuration dynamically at

startup, using included URLs and filepaths that you have specified. This

means that you can create and maintain corporate settings and components

that can be shared by many developers. The Config Editor allows you to

work with several Configs at once, dragging and dropping components

between them. You can even authenticate and connect to a running Server

(locally, or on a remote machine) and work running Configs.

6. There are also buttons for creating and opening Configs on a remote Server. However, this functionality will not be covered in

this manual

Screen capture filename: GettingStarted-11.eps

12 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

When you start the system for the first time, you are presented with the empty

screen as pictured previously. Click the Create a New Configuration button, or use

the File->New menu selection to create a Config called Tutorial1 (note that the

.xml extension is not added for you). This file should be saved in the

examples/Tutorial directory.

Note: path names can be written as relative to the solution directory that you

specified when installing IBM Tivoli Directory Integrator.

Once you have created or opened a Config, the CE display changes, showing you

the contents of this solution description. The tree-view at the left side of the screen

is called the Config Browser, and it presents you with a set of folders that contain

various aspects of your solution.

The topmost folder is called Config and contains three items: AutoStart, Logging

and Tombstones. AutoStart is used to specify which AssemblyLines (or

EventHandlers) are to be launched when the Server starts up. You include items

for automatic startup by dragging them from the Config Browser into the

AutoStart window. The second item, Logging, is used to specify how logs are to be

handled for this Config7. The third item, Tombstones, allows you to create

tombstones for the selected configuration, AssemblyLines and EventHandlers.

The second folder called AssemblyLines will hold the AssemblyLines you create.

Just below it are six folders which make up your Component Library (one folder for

each type of component). This enables you to set up standard Connectors (for

example, LDAP, JDBC, Notes, and so forth) with configuration parameters and

behavior, and then use and reuse them to create new solutions.

Without going into the Config Editor interface in great detail, here is the general

layout of the screen:

v Most of the CE window is organized into panes. The Config Browser appears at

the left, and you can hide and show this pane by using the Toggle

Configuration Tree View button in the main Toolbar, or by clicking on the

arrows at the top of the vertical divider bar.

v To the right of this pane is a Details area which changes to show the details of

items that you select in the Config Browser. The Details pane can show multiple

detailed views, opening a new view each time you select another item in the

Config Browser. These panes can be accessed using the Window menu, the Next

and Previous tab/window buttons in the Main Toolbar, or by clicking on the

tabs at the top of each Details view8.

v The Detail view adapts to show the particulars items selected.

v Some Detail panes contain Element Lists, and you can change the space

allocated for any column by moving the mouse cursor over the boundary

7. Note that you can also specify Logging for individual AssemblyLines and EventHandlers which is applied in addition to any

specification done at the Config level.

8. This depends on the View Type setting in the Appearance tab under File->Preferences. Note that the screenshots in this manual

are of a system with the View Type set to Tabbed

Screen capture filename: GettingStarted-15.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 13

between column titles (the cursor indicates that you can do so by changing

shape), and then clicking and dragging it to the desired size.

v At the top of each Element List is a row of buttons providing the set of

operations that are available for that type of object (except for the AL

Component List and Config Browser tree-view, where the button bar appears at

the bottom). The list of available operations varies for the different Element

Lists, but the general behavior is the same: you select one or more item in the

list and then click the button to manipulate it; with the exception of any Add

button, which does not require you to make a selection first.

v You can select several list items at once by pressing Shift or Ctrl.

v You can drag items from the Config Browser into your AssemblyLines, or

between open Configs.

Creating an AssemblyLine

You will now create your first AssemblyLine. Right-click on the AssemblyLine

Folder and select New AssemblyLine. Name this AssemblyLine CSVtoXML.

 You can name an AssemblyLine whatever you want, but it is important to use a

naming convention that helps to document your solution.

Note: Use of special characters and spaces in naming AssemblyLines or IBM Tivoli

Directory Integrator components (such as Connectors and EventHandlers) is

not a good idea, as it might cause problems later when you want to start

IBM Tivoli Directory Integrator Server from a command prompt to run your

solution. Furthermore, AssemblyLine components are automatically

registered as script variables, enabling you to directly manipulate and

re-configure them at runtime. So a good rule of thumb is to use legal

variable names on all Config items: start them with a letter, followed by

letters, digits and the underscore (_) symbol.

IBM Tivoli Directory Integrator now shows you to the AssemblyLine screen. Notice

that this new screen fills the previously-empty Details pane.

Before adding the Connectors, take a quick look at the layout of the AssemblyLine

screen:

Screen capture filename: GettingStarted-18.eps

14 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

At the top of the Detail pane is a row of tabs, each associated with an open item

from the Config Browser (in this case, your new CSVtoXML AssemblyLine). In the

title area of each tab a is button row that includes a Close button at the far right

for closing this details screen.

Note: ToolTips appear if you let the mouse hover over buttons or labels in the

Config Editor.

Along with Close , the button row also includes a selection and three other

buttons:

Run Mode (selection)

Lets you select the Run Mode for this AssemblyLine:

Step (break on error)

This is the default Run Mode. Step (break on error) causes the

AssemblyLine to execute normally until an error occurs. When an error

Screen capture filename: GettingStarted-19.eps

Screen capture filename: GettingStarted-20.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 15

occurs, the AssemblyLine Stepper/Debugger window appears, allowing

you to examine the data and to debug the exception or error.

Step (paused)

In this mode, the AssemblyLine initializes and then pauses in the

Stepper/Debugger. You can now use the Stepper/Debugger to step

through AL execution, to set breakpoints, and to watch or modify data

during processing.

Standard (run to completion)

This is the fastest run mode and does not invoke the AssemblyLine

Stepper/Debugger.

Standard (record)

This mode allows you to record input data from Connectors during

execution.

Standard (playback)

This mode executes a recorded AssemblyLine run.

Step (playback)

This mode lets you debug a recorded AssemblyLine run.

Help Opens the Help system.

The white box on the left side of the AssemblyLine Details screen is the AL

Component List. This is where new components (for example, Connectors) appear

as they are added to your AssemblyLine.

As you can see, the AL Component List is divided into two main sections: Feeds

and Flow. There is also an additional section called Response which you can ignore

for now, as it is only used in special situations. This division reflects the

requirements and behavior of the AssemblyLine, as well as making the

AssemblyLine more legible. Start by looking at the Feeds section.

In order for your AssemblyLine to do any work, it must be fed with data in the

form of Entry objects. These can either come from Connectors in the Feeds section,

or passed into the AssemblyLine when it is launched. When an AssemblyLine

executes, the built-in behavior steps through its AL Component List starting with a

Screen capture filename: GettingStarted-22b.eps

16 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Feeds Connector. This Connector returns an entry for processing which is then

passed to the first component in the Flow section. This data is then passed from

one component to the next, going down the Flow list until it reaches the end. At

this point, control returns to the Feeds Connector, which can then get the next entry

to be handled. Cycling continues until no more data is returned by the Feeds

Connector.

The next section, called Flow, is where data transport and manipulation is carried

out. Components in this part of the AssemblyLine will be writing, deleting and

looking up data in connected systems, as well as performing transformations on

attributes as the Entry (the Java bucket) flows down the list.

Below the Component List is the Work Entry list. As you select which attributes are

to be read in by AssemblyLine components, they appear in this list along with the

name of the component responsible for them.

To the right of these lists is where the details of the currently selected component

is displayed. This area is blank right now, until you add your first Connector.

At the top of this details area are the AssemblyLine tabs. These tabs give you

access to various aspects of this data flow:

 Depending on your screen resolution, there may not be space on screen to display

all the tabs. Whenever tabs are not visible due to screen size, buttons are provided

to scroll through them.

These tabs are:

Hooks The AssemblyLine Hooks tab enables you to write scripts to be invoked at

various points during execution. We will take a closer look at Hooks later,

but for now let’s examine where the AssemblyLine allows you to insert

your own logic:

v Prolog - Before Initialiaztion: Before Connectors are initialized, allowing

you to reconfigure your Connectors before they fire up their connections.

v Prolog - After Initialization: After Connector initialization, but before

the first cycle begins. The term ″cycle″ here means a single pass through

all the components in the AssemblyLine’s AL Component List.

v On Start of Cycle: At the start of each AssemblyLine cycle.

v Epilog - Before Close: Before Connectors are closed.

v Epilog - After Close: After Connectors are closed.

Screen capture filename: GettingStarted-23.eps

Screen capture filename: GettingStarted-22c.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 17

v On Success: In case the AssemblyLine completed successfully.

v On Failure: If the AssemblyLine aborted due to an error.

v Shutdown Request: When the AssemblyLine is asked to terminate by

some external event, so you can engineer a graceful shutdown.

Data Flow

This tab contains the AssemblyLine components list.

Config...

Gives you a number of configuration parameters for this AssemblyLine.

Operations

This is where you can define Operations for this AL, including the Input

and Output Attributes for each operation

Checkpoint

Although limited in applicability, this tab lets you configure your

AssemblyLine for restart in the case of abnormal termination.

Sandbox

Allows you to select the components you want to include during

AssemblyLine recording or playback.

Logging

For defining logging parameters for this AssemblyLine. These are used in

addition to those defined under the Server->Logging item in the Config

Browser.

Description

This tab provides a text box where you can write documentation for this

AssemblyLine.

The AssemblyLine Config... tab provides you with a number of parameters for

controlling your data flow, such as error tolerance, or limiting the number of

AssemblyLine iterations — very useful when developing and testing a solution

that uses large data sets.

Just below the AL Component List are four buttons:

These buttons perform the following actions:

Add Component

Adds a new component to the AssemblyLine. This can also be done by

dragging a pre-configured component from the Config Browser into the AL

Component List.

Screen capture filename: GettingStarted-24.eps

18 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Delete selected object

Removes the currently selected component (or components) from the

AssemblyLine.

Rename selected object

Enables you to change the name of the currently selected item.

Copy to Library

Makes a copy of the selected component and drops it into the

corresponding Library folder of the Config Browser.

The ordering of components in the AL Component List is significant since the

built-in AssemblyLine behavior will execute them from the top-down. If you want

the move a component in the list, simply select and drag it to the desired position.

Adding the Input Connector

As mentioned in the previous section, you have to set up a feed for your

AssemblyLine in order to get any processing done. You’ll do this by adding your

first Connector and then configuring it to appear in the Feeds section of the

AssemblyLine. Click the Add button under the AL Component List and select Add

new Connector. The system will present you with the New Connector dialog.

Chapter 3. Introducing IBM Tivoli Directory Integrator 19

Choose the ibmdi.FileSystem Connector from the list and name it InputPeople. In

order to get your Connector into the Feeds section of your AssemblyLine, click

Mode and choose Iterator.

9.

Getting back to the exercise again, once you have selected, named and set the

Mode for your Connector, click OK to confirm your choices. This new Connector

appears in the AL Component List under the Feeds section. Notice how the

specifics of this Connector are now shown in the Details display area to the right

of the list.

9. You probably noticed that there are only two modes available for the FileSystem Connector: AddOnly and Iterator. Most

Connectors only support a subset of modes, and choices presented in the Config Browser reflect this.

Screen capture filename: GettingStarted-25.eps

20 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

If you later want to change the type of Connector, simply click on the Inherit

from: button at the top right-hand corner of the details pane and choose a different

one to inherit from.

When setting up a new Connector, you generally follow three basic steps:

Configure, Discover and Map:

v Configure means setting up the parameters necessary to connect to the desired

data source, possibly choosing a Parser to deal with byte stream data.

v Once the Connector is configured, the next step is to Discover which attributes

are available in the data source. This set of available attributes is called the

Connector Schema.

v Finally, you select which of these attributes are to be brought into the

AssemblyLine for processing, also called the Connector Input Map10.

Returning to the example, you now need to configure your new Connector. Make

sure the Config tab is selected in the Connector details display (as shown above).

This tab is closely tied to the data source you are connecting to, and is different for

each type of Connector.

10. Of course, if you are configuring an output Connector, you will define an Output Map instead.

Screen capture filename: GettingStarted-26.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 21

The File System Connector that you just added requires you to enter the path of

the file you want to write to. Using the Select... button next to the File Path field,

select the People.csv file in the examples/Tutorial sub-directory. Note that

depending on your screen resolution, you might have to scroll the pane

horizontally to access the Select button

 Since the FileSystem Connector works with unstructured data (byte streams), you

also have to assign it a Parser. This is done by first selecting the Connector’s Parser

tab and then clicking the Inherit from: box at the bottom of this tab.

Screen capture filename: GettingStarted-27.eps

22 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Select ibmdi.CSV Parser and press OK.

Note: Another way to change the inheritance settings for Parser, as well as other

Connector tabs, is by using the Inheritance dialog. This dialog is activated

with the Inheritance button at the top of the Connectors details pane.

 Finally, if you have a pre-configured Parser in your Component Library then

you can drag it from the Config Browser and drop it on the Inherit from:

box at the bottom of the Parser tab (not to be confused with the parent

Inherit from: button at the top right-hand corner of the Connector Details

Screen capture filename: GettingStarted-27b.eps

Screen capture filename: GettingStarted-28.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 23

pane). All the Connector tabs represent different aspects of the Connector

setup, and can be configured using the same methods described here for

Parsers.

With the Parser in place, your Connector is now configured. Your next task is to

test the Connection parameters and discover the list of available attributes in this

data source. This is done in the Input Map tab11.

The Input Map (and Output Map) tab contains a row of buttons which you will

use to test your connection and discover the Connector Schema — the schema of

the CSV input file in this example.

 These buttons work in a similar fashion regardless of the type of Connector you

are using:

Add an attribute to the Schema

Sometimes you do not have access to a data source during development.

Instead, you use this button to manually add attributes to the Connector

Schema.

11. You probably noticed that there is also a tab called Output Map. Of course, since this Connector is in an input Mode, only the

Input Map is enabled.

Screen capture filename: GettingStarted-28a.eps

24 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Remove selected attributes...

Removes the attributes you have selected from the Connector Schema.

Connect to the data source

This button tests your configuration parameters by firing up the Connector

and having it bind to its data source. The result of this and other data

access operations is displayed in the area next to the button row.

Read the next entry

Once you have connected to your data source, each time click on this

button will cause an entry to be read from the data source and then used

to populate the Connector Schema.

Remove all schema attributes

Pressing this button will clear the Connector Schema, making it ″forget″

which attributes have been either manually added or discovered.

Close the connection...

Closes the connection to the data source. Note that the connection is

automatically closed for you if you close the AssemblyLine Details window

or run the AssemblyLine.

Discover the schema...

This button causes the Connector to request the schema from the

connected data source. This will provide you with the Native Syntax for

each attribute, and may be necessary to discover the complete attribute list

(for example, when working with a directory where attributes may be

optional and not appear in entries examined using the Read next button).

Note that not all data sources provide a schema discovery mechanism, and

you may be limited to stepping through the data instead.

Test your Connector now by pressing the Connect button. If you Connector

manages to find and open the input file then you will see the message Connection

established in the area to the right of the button row. Now click the Read the

next entry button, instructing your Connector to read an entry from the data

source and add this information to the Connector Schema list.

Chapter 3. Introducing IBM Tivoli Directory Integrator 25

The Connector Schema you have just discovered is displayed in tabular form with

the following columns:

Name This is the name of the attribute as it appears in the data source.

Java Class

Each Connector converts attribute values between data source native types

and Java objects, which is the internal representation used by IBM Tivoli

Directory Integrator. Here you will see the Java objects used for each

attribute.

Native Syntax

If you press the Discover Schema button, then this column will contain the

native type used by the data source to store each attribute.

Sample

Displays actual data values being read. This helpful feature allows you to

control that you are getting (and possibly parsing) the data as expected.

Each row in the Connector Schema list represents a single attribute that is available

in the connected data source.

You have now completed two of the three steps in setting up the Connector: You

have configured it (and tested it) and have discovered the schema available in the

connected system. Your next task will be to map the attributes that you want

brought into the AssemblyLine for processing.

Screen capture filename: GettingStarted-29.eps

26 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Mapping Attributes Into The AssemblyLine

Attribute Mapping is the operation of selecting and possibly transforming the data

that will be moving between a data source and the AssemblyLine. You saw in the

previous step how IBM Tivoli Directory Integrator not only discovers the schema

of a connected system for you, it also automatically converts the data to Java

objects. So why is Attribute Mapping necessary?

Although IBM Tivoli Directory Integrator can discover what is available in the data

source, the system has no preconceptions of which attributes you need or what

format you need them in. So at the very least, you must select those attributes you

want to use. Furthermore, some of the attributes might have to be computed,

combined or converted to a different format or type.

To get an idea of how Attribute Mapping works in IBM Tivoli Directory Integrator,

take another look at the AssemblyLine image on page 8. As discussed briefly

before, all AssemblyLine components reflect the kernel/component architecture of

the system. As a result, they are made up of two parts:

The component Interface (e.g. Connector Interface, Parser Interface, and so

forth) For Connectors, this is the data source ″intelligence″, built to access data

via a particular protocol or API. The Interface part of any component is the

part that is platform, technology, format or data source specific.

The AssemblyLine component (called AL Connector for Connectors, AL Parser,

and so forth)

Connectors, like all components, get wrapped when dropped into an

AssemblyLine. This AssemblyLine wrapper provides generic (kernel-based)

functionality like Attribute Maps, as well allowing the built-in

AssemblyLine behavior to link components together and drive them for

you. This is also the part of the component that holds any custom logic

you have added, like attribute transformations, data filtering, error

handling or flow control instructions.

By setting the Mode of your AL Connector, you are telling the AssemblyLine what

operation you want carried out by its Connector Interface. Since all components of

the same type share a common set of features, this means that you can swap out

the Connector Interface of an AL Connector without touching any of your

customization.

Chapter 3. Introducing IBM Tivoli Directory Integrator 27

As also discussed previously, all data is handled in a storage object called an Entry.

Information being passed down an AssemblyLine is kept in a special Entry object

called work. Information passed to or from a data source is kept in a local Entry

object called conn that is managed by the Connector Interface. Attribute Mapping

is the process of copying Attributes from one Entry object to another, and is shown

by the curved arrow in the above diagram. If your Connector is in an input Mode,

then you must define an Input Map that details which attributes you want merged

from the Connector’s conn object into work. An Output Map defines which of the

work attributes that you want sent to the local conn object, which in turn is used

by the Connector to perform the output data operation.

Since your Connector (InputPeople) is in an input mode then you must set up an

Input Map. This is done by selecting one more Attributes in the Connector Schema

that you just discovered and then dragging them to the Work Attribute list12.

12. Selection lists in IBM Tivoli Directory Integrator, like the AL Component list, the Connector Schema and Attribute Maps, support

multiline selections. You can do this by using the Ctrl button while clicking on individual line items, or the Shift button for

selecting a from-to range. The Ctrl + A is a keyboard shortcut for selecting all elements in a list.

Screen capture filename: AttMapping.eps

28 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

In addition to dragging and dropping attributes, you also have a number of

buttons at the top of the Attribute Map for creating and manipulating your Map:

Add Attribute

This button allows you to manually add attributes to the Map.

Remove Attribute

Removes the selected Attribute (or Attributes) from the Map.

Toggle View

Toggles the Attribute Map view between List, Detail and Schema displays.

Quick Discovery

This is a convenience button, and is equivalent to using the Connect and

Read next entry buttons in the Connector Schema button bar.

Null Behavior

This button allows you to define how the Connector will deal with missing

Attributes; for example, by deleting them from the mapping operation, or

giving them a user-defined default value.

Whenever you add Attributes to the Input Map, they also show up both in the

AssemblyLine’s Work Entry display, located just below the AssemblyLine

Connector list.

Screen capture filename: GettingStarted-32.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 29

The Work Entry display is like a window into your data flow, showing you which

attributes are being mapped in from connected systems (or created by you), as well

as the name of the Connectors responsible for them. Any Attributes defined in an

Input Map in your AssemblyLine appear in the Work Entry window.

Note: There is also an Operations tab that displays Input Mapped parameters for

an AssemblyLine with Operations defined. However, this is an advanced

topic that is not covered in this text.

Use the Toggle View button to view the Schema display. Once you’ve completed

your first Input Map, your screen should look something like this:

Screen capture filename: GettingStarted-35.eps

30 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

This Attribute Map is what is called a simple Map, meaning a one-to-one direct

transfer of attributes and values from the Connector cache (the conn object) to the

Assembly Line’s work Entry. Sometimes you need more control over how data is

mapped. To change the mapping of an attribute, you must first select it in the

Map.

Selecting an Attribute in the Attribute Map brings up its mapping settings13.

13. Attribute Map settings fill the same screen area previously occupied by the Connector Schema. In order to restore the Schema

view, use the Toggle View button above the Attribute Map.

Screen capture filename: GettingStarted-36.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 31

The settings display tells the user how this Attribute is being handled, and

includes the following controls:

Enabled

You can exclude an Attribute from the Map by clearing this check box.

Type This menu allows you to specify how this Attribute map is to be carried

out. The options are:

v Simple - Simple type means that the mapping is done by copying values

from the selected Attributes in the list

v Advanced (JavaScript) - Advanced mapping, on the other hand, is done

by executing JavaScript, where values can be computed.

v Expression - Allows you to define a TDI expression for evaluation. For

more information about TDI expressions, see the IBM Tivoli Directory

Integrator 6.1: Users Guide.

Null behavior

This button allows you to override Null Behavior for this attribute.

Select from schema (list)

Simple mapping is defined by the selections made in this list. Most

Attributes are mapped to a single source; however, you can select multiple

source Attributes in this list, resulting in a multi-value mapping.

According to best practices, solution customization is divided into two areas:

attribute manipulation and flow control. Attribute manipulation is done, as much

as possible, in Attribute Maps. This makes your solution easier to read and

maintain, ensuring that any attributes handled in the flow show up in the Work

Entry display.

Screen capture filename: GettingStarted-37.eps

32 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

To get your feet wet with attribute manipulation, select the ″First″ Attribute (if it is

not already selected) and then select Advanced (JavaScript) from the Type menu.

The lower part of the Attribute Map settings pane changes to a Script Editor

window where you can enter the following snippet of JavaScript:

 ret.value = conn.getAttribute("First");

The purpose of an Advanced Map is to return a value for the selected Attribute,

accomplished by setting the ret.value variable at some point in the script. As

mentioned earlier, there is a local storage object in each Connector called conn

which is used to cache read operations. This object is available as a script variable

for use in Advanced Maps and gives you direct access the Connector’s local cache.

The above code sets ret.value to the Attribute called First that has just been read

into conn, instructing the system to copy its values during the mapping operation

— in effect, duplicating the behavior of simple attribute mapping.

 Restore the simple mapping of this attribute by selecting Simple from Type. Not

only is simple attribute mapping easier to read, but it’s faster than invoking script

code.

Let’s practice customization on something more productive than simulating a

simple map. If you remember the description of our example integration problem

on page 6, there are a few attributes that do not exist in the input file. These will

have to be created by your solution; specifically, in one of your Attribute Maps.

Start by adding a new Attribute to the Input Map. Do this by pressing the Add a

new Attribute... button in the toolbar at the top of the Input Map.

Screen capture filename: GettingStarted-36.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 33

In the dialog box that appears, enter ″FullName″ and click OK (or press the Enter

key twice: first to acknowledge your field editing and then to accept and close the

dialog box).

Your new Attribute appears in both the Input Map and the Connector Schema list.

This is because IBM Tivoli Directory Integrator assumes that you want to use

simple mapping (the most effective method) to retrieve the Attribute’s value. Of

course this won’t work since there is no FullName Attribute in the CSV input file.

Instead, you must select this new Attribute from the Type menu and select

Advanced (JavaScript). This opens the Script Editor window again where you can

enter several lines of script such as those shown below.

Screen capture filename: GettingStarted-37.eps

34 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Here is the code so you can cut-and-paste it into the editor if you want:

 gn = conn.getString("First");

 sn = conn.getString("Last");

 ret.value = gn + " " + sn;

Note: Pasting some characters may not work because they are represented

differently in the documentation file (PDF) than their simple character

counterpart as used in the script. Not all script lines shown in this guide can

be simply copied and pasted into TDI. If you receive error messages of the

this type:

com.ibm.jscript.parser.ParseException: Syntax error at line 1, column 38. Invalid ’\u2019’ after ’’

this indicates that some character (a single quote in this above example) is

invalid. Just retype these characters and try again.

The first two lines above retrieve the values of the Attributes named First and Last

as Java Strings (java.lang.String), and stores them in two new variables called gn

and sn respectively: The final statement returns the value of these two local

variables concatenated together with a single space between them.

Notes:

1. This Attribute can also be computed using the following TDI Expression:

{conn.First} {conn.Last}

It is unnecessary to set ″ret.value″ to map the Attribute. The result of the

Expression is used as the Attribute’s mapped value.

Screen capture filename: GettingStarted-38.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 35

2. You can also create this attribute in the output Connector you are about to add.

However, because you need it later in your AssemblyLine, it is necessary to

have this code in the Input Map of the InputPeople Connector.

The Entry Feed to your AssemblyLine is now finished. You have configured a

Connector; tested it by connecting to the input source and discovered the schema

of the CSV file; Then you selected the attributes you want to process in your data

flow; and even computed a new using custom script. Time to complete the first

phase of this exercise.

Adding the Output Connector

You will complete your AssemblyLine by adding a Flow component to process the

Entries coming out of your Iterator Feed (i.e. the CSV FileSystem Connector in

Iterator Mode). The target system for the AssemblyLine is to be an XML document,

so you need to add another FileSystem Connector by again clicking the Add

button in the button toolbar at the bottom of the AL Components list. Name this

Connector XMLOutput. Choose the FileSystem type again and set the Connector

mode to AddOnly.

With this Connector still selected, configure the Connection parameters by setting

the output file name to ″Output.xml″ and writing it to the same directory where the

input file is located.

Now click on the Parser tab and select the XML Parser.

36 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Just as you specified which attributes your Iterator (InputPeople) was to bring into

the AssemblyLine, you must now also tell your new output Connector what you

want written to the XML document. Do this by clicking the Output Map of your

XMLOutput Connector. Now select all the Attributes in the Work Entry display

(e.g. select one and press Ctrl + A) and then drag them to the Output Map.

Screen capture filename: GettingStarted-40.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 37

Finally, you need to create another computed Attribute, Mail, as specified back on

page 6. You will base the new value of the Mail Attribute on the one being

computed previously during CSV input: FullName. Furthermore, since people

often have more than one e-mail address, you will compute two values, making

mail a multi-value attribute.

To do this, click the Add Attribute button in the toolbar at the top of the Output

Map. This opens a dialog asking you to name the new attribute. Call it Mail and

click OK.

Select this new Attribute and then select Advanced (JavaScript) from the Type

menu. Here is the script code to use:

Screen capture filename: GettingStarted-64.eps

38 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Let’s go through this script to see what it does.

 gn = work.getString("First").replace(’ ’,’.’);

 cn = work.getString("FullName").replace(’ ’,’.’);

These first two lines store the values of the First and FullName attributes in local

variables. Notice how you use the work object to access data inside the

AssemblyLine. The .replace() function is a standard Java String method that will

swap out any spaces found with dots. You can use this function since

work.getString() returns the value of a named Attribute as a Java String, and you

need to do this since e-mail addresses cannot have spaces in them: ″Peter Belamy″

must be changed to ″Peter.Belamy″

 var att = system.newAttribute("Mail");

This next line uses a system call to create a new Attribute. The system object

provides methods for creating many important objects, like Attributes and Entries.

It also gives you access to flow control functions, as you will see later.

 att.addValue(gn + "@company.com");

 att.addValue(cn + "@company.com");

Now the new e-mail addresses are computed and added as values to the Attribute.

 ret.value = att;

Finally, the newly created attribute is returned and used for the Output Map14.

14. The Advanced Mapping examples so far have returned an Attribute object, not just a value to use. Sometimes it’s enough to

simply specify the value — which can be any type of Java object. For example, if you were computing an Attribute called

″EmployeeType″, you could use the following script snippet to handle mapping:

 ret.value = "Full-Time";

Screen capture filename: GettingStarted-41.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 39

Your first data flow implementation is ready to test.

Running your AssemblyLine

In order to test your AssemblyLine, you must start up the run-time Server, point it

at your Config and instruct it to launch your solution. Fortunately, the Config

Editor provides an easy way to do this. Simply click the Run button in the

AssemblyLine’s button toolbar at the top of the AssemblyLine Details window (or

use the Alt + R keyboard shortcut).

In this case, the returned String value is used for the mapped Attribute’s value. You can also return multiple values by using a

JavaScript array:

 ret.value = ["This is the first value", "and here is the second"];

The above code would result in a multi-valued Attribute mapping containing two String values.

40 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

When you start an AssemblyLine from the Config Editor, the system starts a

separate instance of the Server, pipes the current configuration to it and instructs it

to run this AL. As a result, your test behaves exactly as it will in deployment.

IBM Tivoli Directory Integrator now creates a new details tab labeled Execute:

CSVtoXML displaying the log output of your AssemblyLine.

Screen capture filename: GettingStarted-44.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 41

Aside from the Process exit code at the bottom that tells you that AssemblyLine

stopped after reaching the end of its input data set, this log is divided into three

main parts:

v Information about the version of the server that you are running.

v Description of the environment that IBM Tivoli Directory Integrator is running

in, including which VM it is configured to use, and the working directory.

v Information about how your solution performed, including:

– Specifics about tracing and API services started.

– The Config that is being used — which in this case is shown as <stdin>

meaning that it was piped to the runtime server from the Config Editor.

– Messages generated during the running of the AssemblyLine and its

Connectors.

– Information about how your solution performed.

Note: Information from the Stepper/Debugger is displayed in blue. You will

see these whenever you run an AssemblyLine in Step mode.

At the bottom of this last section is the message that the AssemblyLine

(CSVtoXML) ran without errors. This means that you can open the output file that

you specified in your XMLOuput Connector. Opening this file (for example, in a

Screen capture filename: GettingStarted-43.eps

42 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

browser) enables you to confirm that the AssemblyLine has actually converted the

CSV input data to the XML document.

Even the Mail and FullName attributes are there, computed by your script

snippets.

However, one of the entries (Roger, outlined in the above screenshot) is

incomplete. This entry is lacking both the Last and Title attributes15. If you check

the input data file (see page 10) then you can see that these fields are actually

missing from the input CSV file.

15. You probably also notice the text ″null″ appearing in the values of your computed Attributes. This is because of default Null

Behavior which causes missing Attributes to be removed from an Attribute Map. These Attributes, Last or Title, were never

available for Roger’s Entry. When you later used the .getString("Last") method to retrieve the string value of Last in order

Screen capture filename: GettingStarted-44.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 43

The easiest solution is to edit the CSV file and add the missing fields. However,

few data sources give you this much control. Instead, you are going to filter the

input by scripting a Hook.

Note: But before you do anything else, save your work in one of the following

ways::

v Click Save button in the main tool bar.

v Select File->Save from the Main Menu.

v Use the Ctrl + S keyboard shortcut.

Working with Hooks

Hooks are waypoints in the built in behavior of the AssemblyLine, as well as that

of Connectors and Function components where you can add your own scripted

logic. In most cases, Hooks are provided for you to extend the automated

workflows. However, some Hooks even allow you to override standard behavior,

like the Override GetNext Hook of your InputPeople Iterator Connector. If this

Override Hook is enabled, then it replaces the subsequent Connector flow up to

(but not including) the Success/Error Hooks.

Getting back to the exercise at hand, your next task is to check for missing data in

the CSV input file. Since this data source is handled by the Connector called

InputPeople, select it in the AL Component List and then choose the Connector’s

Hooks tab. This will give you access to the tree-view of Hooks.

to compute the value of FullName, which was later used to compute the Mail address, the .getString() function could not find

these Attributes. Instead of crashing your script, this function simply returns the String value ″null″ to indicate failure. Note that

if you use the .getAttribute() method instead of .getString(), you actually get a null return.

44 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Hooks are listed, from the top down, in the same order that they are executed.

There are three sets of Hooks for every Connector, represented by folders in the

Hooks tree-list:

In Prolog

There are at least two Hooks in this folder:

v One run just before the Connector is initialized.

v One run just after initialization.

In Iterator mode you also get two additional Hooks: Before and After the

selection operation, where the Connector requests its input data.

DataFlow

Hooks in this section are executed during each cycle of the AssemblyLine.

Hooks such as Before Execute, Default Error and Default Success are

common to all Connector modes. Most of the others are mode-specific.

Since your InputPeople Connector is in Iterator mode, it is doing a

number of GetNext operations to retrieve successive Entry objects from the

input data set. Iterator mode gives you Hooks such as Before GetNext and

After GetNext so that you can wrap this read operation in your own logic.

All Connectors also have an On Connection Lost that is invoked whenever

an exception occurs that TDI identifies as a connection error. This Hook is

called before any Reconnect attempts are made.

Screen capture filename: GettingStarted-47.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 45

After Epilog

These Hooks are started once at the end of the AssemblyLine’s life-cycle,

before and after the Connector closes its connection.

With the InputPeople Connector selected, click the After GetNext Hook in the list.

Notice how this Hook is executed just before the Input Map is performed. This

means that the data read in from the CSV file is still only available in the

Connector’s local conn object. Enter the following script to handle filtering of

incomplete data:

 Let’s walk through this script code:

 sn = conn.getAttribute("Last");

 title = conn.getAttribute("Title");

The first two lines attempt to retrieve and store two attributes that should be

available in the conn object16.

 if (sn == null || title == null) {

This code checks to see if the Attributes Last and Title exist in the conn Entry

object (e.g. if they were found in the CSV file). If not, then the .getAttribute()

calls return null and the next three lines are executed (everything inside the curly

braces denoting a code block).

 task.logmsg("-----> Incomplete input data");

16. If you were to script your logic in the GetNext Successful or Default Success Hooks instead, then since these Hooks come after

the Input Attribute Map, your script could reference the work object instead.

Screen capture filename: GettingStarted-48.eps

46 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

The task object gives you access to AssemblyLine functions like logmsg(), allowing

you to include messages in the AssemblyLine log.

 task.dumpEntry(conn);

This AssemblyLine function displays the contents of the specified Entry object to

the log. You can use it to view standard variables like work and conn, as well as

any Entry objects you create yourself..

 system.skipEntry();

 }

Finally, the system object’s skipEntry() function tells the AssemblyLine to stop

processing the current Entry, pass control back to the start of the AssemblyLine

cycle (e.g. the active Feeds Connector) and get the next input object.

As an extra exercise, you can take a simpler and more legible approach to solving

this problem.

1. Stay out of the Hooks. Instead, insert a Branch just before your XML_Output

Connector.

2. Add a Condition for the Branch to test if the Last Attribute does not exist

(which means requires you to click Negate for the Condition).

3. Under this Branch, insert a Script component that displays the log message and

then skips the Entry as shown in the Hook code above.

4. Disable the After GetNext Hook once you have your Branch logic in place.

Branches are described later in this guide, but go ahead and try this yourself now

and discover how this approach not only makes your AssemblyLine easier to read,

it also allows you to step through the logic using the Step (paused) run mode.

In keeping with the iterative, try-test-refine methodology of IBM Tivoli Directory

Integrator, you are now ready to test your solution again. But before running the

test, you will make a slight change to XMLOutput Connector’s Output Map.

Schema conversion

In our example (see page 6), the output attributes required by DS3 have the same

names as those of the input source (DS1). Imagine for a moment that the

specification called for output attributes to be named FirstName and LastName

instead:

 FirstName =DS1.First

 LastName =DS1.Last

 FullName =DS1.First+" "+DS1.Last

 Title =DS1.Title

 Mail =<compute_from_name>

IBM Tivoli Directory Integrator makes mapping attribute names between schemas

easy, and all you need to do is update the names of these attributes directly in any

Attribute Map.

So as not to affect maps and script logic that expect to find the First and Last

Attributes, you will do the renaming in the Output Map of the XMLOutput

Connector. Select this Connector now and then double-click on the attribute that

you want to change in the Output Map — and just start typing.

Chapter 3. Introducing IBM Tivoli Directory Integrator 47

Don’t worry about this causing scripts in the AssemblyLine to fail. These names

are being changed locally for the Output Map phase only. The First and Last

attributes are still read in correctly, and are available throughout the AssemblyLine

under their original names.

Note: Because IBM Tivoli Directory Integrator keeps focus in the field that you are

entering even if you switch to a different Connector or AssemblyLine, you

can be left hanging in edit mode for the attribute name. If you then test your

AssemblyLine, your change will not be sent to the Server. To leave edit

mode, either click on a different attribute in the same map, or press the

Enter key so that IBM Tivoli Directory Integrator knows you are done.

Leave these changes in (even though this is not part of your original specification)

and then run the AssemblyLine again. When execution completes, go back to the

output browser window and click the Refresh button.

When the output file is visible again, confirm that Roger is no longer there (he

used to be between Jill and Gregory). You should also see your incomplete input

data message in the log, as well as the changes you made to two of the attribute

names.

Save your Config again (Ctrl + S), and go to the next step: aggregating data from

a third data source.

Screen capture filename: GettingStarted-50.eps

48 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Adding the Join Connector

Included with the Tutorial files is a simple database of people who owe money.

Use this source to include debt information in the output XML document.

Adding a new data source to our flow means inserting a third Connector in our

AssemblyLine. Do this now, calling this Connector Debtors and choosing the

BTreeObjectDB Connector. This Connector needs to be in Lookup mode since you

want it to search a record that matches data brought into the AssemblyLine by

your InputPeople Connector. You have now worked with Connectors in three

different modes: Iterator, AddOnly and now Lookup. Before we continue, let’s take

a closer look at the various modes available for Connectors, and what these mean

to your solution.

As mentioned previously, the Mode setting tells the AssemblyLine what role this

Connector will play in the data flow: Will it be feeding the AssemblyLine with

data, writing information, deleting it or performing lookups. Connectors can be set

to one of eight possible modes, each providing specialized behavior and options

for customization:

Note: It is possible to create custom Connector Modes using the AssemblyLine

Connector in combination with AL Operations. For more information, see

the IBM Tivoli Directory Integrator 6.1.1: Users Guide.

AddOnly (Flow)

This mode is for Connectors that add new information to a data source, for

example, writing to files, or creating new records in a database or entries

in a directory. AddOnly Connectors show up in the Flow part of the

AssemblyLine.

Delete (Flow)

Appearing in the Flow section as well, Delete mode Connectors search for

and then delete a specified entry. Search criteria that the Connector uses to

pinpoint the entry to be deleted is specified when you set up the

Connector.

Iterator (Feeds)

A Connector in Iterator mode appears in the Feeds section of the

AssemblyLine. This mode will cause the Connector to run through the

contents of its data source (or a part of it, like the result of a database or

directory query) and feed the entries one at a time to the Flow section

components for processing. Connectors in Iterator mode are often called

Iterators for short. An AssemblyLine can contain more than one Iterator,

and these feed the AssemblyLine exclusively in succession; for example,

the second Iterator taking over once the first one reaches the end of its

data set, then the third one when the second completes, and so forth.

Lookup (Flow)

Lookup Connectors reside in the Flow section. This mode causes the

Connector to find and return entries that match the specified search

criteria. This is the mode you use to aggregate, or join new information

into your flow.

Update (Flow)

In Update mode, a Connector tries to find an entry based on search criteria

settings. If the lookup succeeds, the existing entry is modified as specified

in the Connector. If the lookup fails, then the Connector adds a new entry

instead. Update Connectors appear in the Flow list.

Chapter 3. Introducing IBM Tivoli Directory Integrator 49

Call/Return (Flow)

This is a special output/input mode which first sends a call package (such

as a SOAP message or JMS entry) to the connected system, and then waits

for a reply. These Connectors appear in the Flow list.

Server (Feeds)

Appearing in the Feeds section, Server mode Connectors listen for events in

connected systems and then feed event data to the Flow component list. For

example, you can configure the HTTP Server Connector in Server mode to

monitor a desired port for incoming browser requests, or the LDAP Server

Connector to accept and process LDAP requests.

Delta (Flow)

Connectors in Delta mode are Flow components, and provide functionality

for applying changes detected by an appropriate Change Detection

Connector in the Feeds section. Delta mode requires the Entry and its

contents to be tagged with special change operation codes, enabling it to

perform the delta update (add, modify or delete) in the most efficient

fashion.

 Returning to our example, when you added your new Connector, IBM Tivoli

Directory Integrator placed it at the end of the AssemblyLine. But this won’t work

because you need to do the join just after the initial input (iteration), but before

output to XML.

To fix this, simply select and drag the Connector to the top of the Flow section.

Now enter the path name of the BtreeObjectDB data file. Note that the database

file itself is called Debtors.dat and should be located in the examples/Tutorial

Screen capture filename: GettingStarted-52.eps

50 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

sub-directory. In the Key Attribute Name field you need to specify the name of the

attribute that uniquely identifies these records. For this tutorial database, the Key

Attribute is FullName17.

Test your parameter settings like you do with any Connector by selecting the

Input Map tab. However, instead of using the Connect and Read next... buttons,

try the Quick Discovery button in the Attribute Map button bar.

This convenient button makes the Connector connect to its source, do a single

GetNext on the data set and then examine the returned Entry. The attributes found

here are displayed in the Connector Schema list and are ready for mapping. Now

although this does not discover all the attributes defined in the schema of the data

source (you need to use the Discover Schema button found at the top of the

Connector Schema list for this) it is enough for you to continue your work.

Set up the Input Map by dragging Amount and DateOfLoan from the Connector

Schema list into the map. You should see these two attributes appear in the Work

Entry display, indicating that they are now available in the AssemblyLine.

Note: As you’ll see in the following section, you will use the newly discovered

FullName attribute to set up the search criteria for the Lookup, even though

you did not include it in the Input Map. An attribute does not need to

appear in the Input Map in order for you to use it for searching — just as

long as it’s available in the data source.

17. And now you know why you needed to construct this attribute in the Input Map of your Iterator

Screen capture filename: GettingStarted-54.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 51

Setting up Link Criteria

Because it’s in Lookup mode, the new Debtors Connector is searching for specific

entries in its data source, trying to find a match for the entry that is already inside

the AssemblyLine. Exactly how this match is made is determined by search rules

called the Connector’s Link Criteria.

Since the Debtors Connector is in a mode that requires it to find matching entries

in its data source, the tab called Link Criteria is enabled.

Selecting this tab brings up the Link Criteria display where you can create one or

more simple Link Criteria matching rules. These rules are AND’ed together by the

Connector to make the system–specific call; or if you select the Match Any

checkbox, then a logical OR is used instead. Since each Connector knows how to

translate your Link Criteria to the relevant syntax for the underlying data source,

your solution is kept technology independent18.

Click the Add new Link Criteria button in the Link Criteria toolbar to configure a

new search rule:

18. Remember the Advanced Mapping feature for scripting an Attribute Map yourself? This same principle applies here. By

selecting the Build criteria with custom script checkbox, you get a Script Editor window where you can write code to create the

data source-specific lookup call. Here you must set ret.filter to the search phrase you want the Connector to use. For example,

this would be the WHERE clause of an SQL SELECT statement for a JDBC Connector, or an LDAP search filter if you are

working with a directory. Using scripted criteria allows you to build complex queries. However, the trade-off is that your

solution becomes more tightly bound to the underlying stores and technologies.

Screen capture filename: GettingStarted-55.eps

52 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

When the Link Criteria dialog box appears, choose FullName for the Attribute

parameter, selecting it from the schema that IBM Tivoli Directory Integrator

discovered in the data source. Then select the equals comparison Operator. Finally,

choose $FullName from the Value menu.

 Notice how the Value menu only shows you those Attributes that are present in

the flow before this Connector is reached. Those Attributes brought into the

AssemblyLine by the Debtors Connector are not available yet, and cannot be used

to set up Link Criteria at this point.

Click OK when you are done.

Note: The dollar sign ($) character in front of the FullName attribute in the

AssemblyLine instructs IBM Tivoli Directory Integrator to retrieve the first

Screen capture filename: GettingStarted-56.eps

Screen capture filename: GettingStarted-57.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 53

value of the named attribute to use in building the Link Criteria. If you

want to match any one of the values of a multi-value attribute, you can use

the at symbol (@) instead. To search for a literal value, simply enter the

desired text in the Value parameter directly.

Now the join is ready and your last task is to tell the output Connector to include

the new Attributes (mapped in by the Debtors Connector) in the XML output. Do

this by selecting the XMLOutput Connector and its Output Map tab. From the

Work Entry box, drag the new Amount and DateOfLoan attributes onto the map.

Save your work and run the AssemblyLine again.

What happened now? The AssemblyLine crashed with the following log output:

Screen capture filename: GettingStarted-59.eps

54 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

...

15:07:53 BEGIN Iteration

15:07:54 [Debtors] Lookup

java.lang.Exception: [Debtors] Entry not found

 at com.ibm.di.server.Log.exception(Unknown Source)

 at com.ibm.di.server.AssemblyLineComponent.lookup(Unknown Source)

 at com.ibm.di.server.AssemblyLine.msExecuteNextConnector(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainStep(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainLoop(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeAL(Unknown Source)

 at com.ibm.di.server.AssemblyLine.run(Unknown Source)

15:07:54 Error in: NextConnectorOperation: java.lang.Exception: [Debtors] Entry not found

java.lang.Exception: [Debtors] Entry not found

 at com.ibm.di.server.Log.exception(Unknown Source)

 at com.ibm.di.server.AssemblyLineComponent.lookup(Unknown Source)

 at com.ibm.di.server.AssemblyLine.msExecuteNextConnector(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainStep(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeMainLoop(Unknown Source)

 at com.ibm.di.server.AssemblyLine.executeAL(Unknown Source)

 at com.ibm.di.server.AssemblyLine.run(Unknown Source)

15:07:54 BEGIN Connector Statistics

15:07:54 [InputPeople] Get:1

15:07:54 [Debtors] Errors:1

15:07:54 [XMLOutput] Not used

15:07:54 Total: Get:1, Errors:2

15:07:54 END Connector Statistics

15:07:54 failed with error: [Debtors] Entry not found

15:07:54 AssemblyLine AssemblyLines/CSVtoXML failed with error: [Debtors] Entry not found

Whenever you get an error that is not handled by your solution, the system gives

you an exception dump similar to the one above. If you examine the messages at

the top of the dump you can see that IBM Tivoli Directory Integrator is telling you

exactly where the error occurred:

 ...

15:07:54 [Debtors] Lookup

 ...

So your Debtors Connector failed during the lookup operation. Furthermore, the

next line details the type of exception that occured:

...

java.lang.Exception: [Debtors] Entry not found

...

.

This tells you that your AssemblyLine failed because you have not accounted for

the situation where the Debtor Lookup Connector fails to find a match its

database, i.e. that these people do not owe money. Fortunately, IBM Tivoli

Directory Integrator has a number of ways to deal with this situation. In this case,

you can program a Hook to remedy the problem.

The logic you implement to deal with the failed lookup can handle the exception

in a number of ways:

v You can choose to ignore the fact that the entry sometimes does not exist in the

Debtors.dat database. In that case, you instruct the program to ignore the

exception and move on to the output Connector. Since no matching entry was

found, the Connector cannot map in the Attributes you specified. As a result,

your output contains all entries, but only some with debt information.

Chapter 3. Introducing IBM Tivoli Directory Integrator 55

v Or you might want to include only people with debts in your XML document,

in which case you instruct the system to skip any Entries that have no matching

data in Debtors.

If you wanted to simply ignore the error, then all you have to do is enable the

Hook called On No Match in the Debtors Connector:

1. Select the Debtors Connector and click its Hooks tab.

2. Click on the On No Match Hook in the tree-view that is presented here. A

Script Editor window is displayed.

3. Check Enabled , save your work and run the AssemblyLine again.

 By enabling the Hook, you are telling IBM Tivoli Directory Integrator not to do

anything if no matching data is found during the Lookup.

When you run the AssemblyLine again it does not crash, and the log output looks

like this:

Screen capture filename: GettingStarted-65.eps

56 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Here you can see the messages and entry dump that you coded into your filtering

script (in the After GetNext Hook of InputPeople), as well as the message that no

errors were encountered this time.

Your XML output file shows a couple of important changes as well:

v The two new Debtors fields that were included are visible in the output.

v The number of attributes per XML entry became variable, since the

AssemblyLine did not find debt information for all of them.

Note: You may have noticed that the XML document tags do not appear in the

same order as they are listed in the Output Map. Attributes Maps are sorted

alphabetically, and this ordering will generally have no effect on the order of

attributes in your output.

But let’s say that you are only interested in those people that do owe money. Then

you will want to implement the second option outlined above, effectively filtering

Entries for people with no matching Debtors data. To do this, add the following

snippet of script to the On No Match Hook in the Debtors Connector:

system.skipEntry();

Screen capture filename: GettingStarted-65a.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 57

As you saw before, the system.skipEntry() command tells your AssemblyLine to

skip the current Entry, go back to the top and let your Iterator grab the next one.

So now your completed solution is doing two types of data filtering: a) your

PeopleInput Iterator is skipping incomplete records in the CSV file, and b) the

Debtors Lookup Connector is passing only debtors to output.

Now that you’ve gotten a grip on building, testing and running an integration

solution using IBM Tivoli Directory Integrator, it’s time to look at how you wire

event-awareness into them.

Event-driven Integration

Up to this point, your solution has been batch-oriented; you have been launching

your AssemblyLine manually from within the Config Editor. You can also launch

your AssemblyLine from the command line:

 ibmdisrv -c examples/Tutorial/Tutorial1.xml -r CSVtoXML

Launching from the command line allows you to use batch mechanisms to fire off

your AssemblyLines on a scheduled basis, or at the request of external

applications.

Screen capture filename: GettingStarted-63.eps

58 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

However, IBM Tivoli Directory Integrator provides you with the tools to build

event-awareness directly into your solutions19, allowing you to take actions at

timed intervals based on changes in data sources, messages coming in via mail, IP

packets or MQ.

Event handling can be done in a number of ways:

Connectors in Iterator Mode

Some Connectors allow you to configure timeout parameters for Iterator

Mode. One example is the FileSystem Connector, which can be set up to

read through a file to the end and then wait for new information to appear

– a so-called tail read.

 Other Connectors, like those for RDBS Change detection and LDAP

Changelog, work in a similar way. These Connectors allow you to build

AssemblyLines that run continuously, waiting for new changes to appear

in the connected system. There is also a Timer Connector that runs in

Iterator Mode and can be configured to drive your AssemblyLine at timed

intervals according to a scheduling parameters.

Connectors in Server Mode

There are a few specialized Connectors, like the HTTP Server Connector

and the LDAP Server Connector, that use the Connector Server Mode.

These components allow you to build solutions that process incoming

requests from external clients.

 For example, the HTTP Server Connector can be configured to listen to a

specific IP port waiting for connection requests. When a client makes a

request, such as HTTP GET or POST, the Connector creates a copy of itself

in Iterator Mode in order to retrieve the data and pass it to the Flow

section of the AssemblyLine. The Server Mode Connector itself

immediately returns to listening mode to catch new events20. In addition,

the Connector automatically clones a new copy of itself for each client that

makes a connection.

 Working in a similar fashion, the LDAP Server Connector enables your

AssemblyLines to accept incoming LDAP requests, enabling you to build

solutions that provide virtual directory services.

Notifications and properties

TDI has components that can subscribe to TDI notification events, just as

there are components (and script calls) for sending these events.

In the following example, you will use the same techniques that you’ve learned in

the previous exercises, except that this time when you run the AssemblyLine, it

will not stop. The AssemblyLine will wait for an event to trigger it. When an event

occurs, your AssemblyLine will service the event and go back to listening again.

This is what a Server Mode Connector does.21.

19. IBM Tivoli Directory Integrator also boasts a rich API allowing you to configure and manage a running Server without ever even

starting the Config Editor. There is also a command line interface program (tdisrvctl.bat under the bin sub-directory) that lets

you connect to any running TDI Server. Using the CLI you can load and control solutions from the command prompt, from

batch-files and shell scripts.

20. Note that you can define an AssemblyLine pool in the AssemblyLine Config tab. This is actually a pool of the AssemblyLine

Flow list so when you have a lot of incoming traffic, the Server Mode Connector will have enough pre-initialized and ″hot″

AssemblyLines to deal with these events

21. You can think of Server Mode as being three modes rolled into one: First you have the actual Server Mode operation of

connecting to a resource and waiting for a client to connect; And then accepting (or rejecting) these incoming connections. If the

client call is accepted, the Server Mode Connector creates a copy of itself in Iterator Mode.

Chapter 3. Introducing IBM Tivoli Directory Integrator 59

In this example you’ll use a Server Mode Connector in your Feeds section. Server

Mode tells the Connector to bind to a resource (like an IP port) and wait for

incoming connections. The one you’ll use is called the HTTP Server Connector,

and it provides the framework for a Web server at the configured IP port.

Start by creating a new AssemblyLine and naming it WebServer. Then add a

Connector, selecting the HTTP Server Connector type and calling it HTTPListener.

The only mode this Connector supports is Server.

The Configuration of this Connector is simple – just leave the default settings as

they are. The Web server will be available on port 80. The next step is to discover

what Attributes are available for mapping. Do this by selecting the Input Map tab.

The schema for this Connector is already discovered. Like the other Server Mode

Connectors, it has a hard-coded Schema22. This is because it’s difficult to connect

and discover the schema of a client – you have to have one connect to you first. So

for convenience, these components show you what to expect.

 This Iterator is then attached to the AssemblyLine Flow section (making this AssemblyLine look a lot like the one you were just

working on: an Iterator feeding data to Flow components). This leaves the Server Mode Connector free to go back to listening

again while the newly constructed AssemblyLine handles the call. Note that the Server Mode Connector has also added a Reply

Mode Connector to the end of this AssemblyLine – after the Flow section.

 So, when Flow processing is complete, the Reply Mode Connector uses the Work Entry that just left the Flow section to send a

response back to the client. If you look at the Hooks of a Server Mode Connector, you will see all three: Server, Iterator and

Reply.Furthermore, when you use a Server Mode Connector, you can configure your AssemblyLine to use a pool of

AssemblyLine Flow sections, allowing your web server solution to handle more traffic.

22. Notice the strangely named Attributes, like “http.*”, in the Connector Schema. When you use the wildcard (*) in the Input Map,

then you also see these same names appear in the Work Entry. This does not mean that you’ll be getting an Attribute called

“http.*”. Rather, it indicates that you can expect to receive a number of Attributes with names starting with “http.”. Remember

that the CE is a design-time tool, so sometimes you only get guidelines for what will happen at run-time.

Screen capture filename: GettingStarted-66.eps

60 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Select all the attributes by creating an attribute named * (the asterisk) in the Input

Map.

All Connector Schema Attributes are mapped into the Work Entry. Now go to the

Output Map and add a wildcard attribute there as well. Otherwise, nothing will be

mapped out into the reply message that will be sent to the client.

The next step is to check that the framework for your Web server is working. Do

this now by clicking the Debug button.

This starts your AssemblyLine just like clicking Run , except that your

AssemblyLine is running in interactive mode. Instead of the usual log output

display, the Debugger window opens instead.

Screen capture filename: AddWildcard.eps

Screen capture filename: rundebugger.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 61

You still get the log output in the lower right-hand window, but this now also

includes debug messages in blue – both those coming from the TDI, as well those

that you send yourself with scripted calls to “task.debugMsg()”.

At this point, your Server Mode Connector is listening to port 80. Nothing more

will happen until you connect to it from a browser by entering the address of the

socket being listened to. Open a Web browser and enter http://localhost in the in

the address field.

Screen capture filename: Debugger1.eps

Screen capture filename: DialupBrowser.eps

62 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Your AssemblyLine will begin to process this null request, and you are given

control. Now you can use the Step Into button to walk through the processing.

(The Step Into button is the button with footprints on it.)

The first thing you will see is that your Iterator goes through the Prolog Hooks,

even though this component is already initialized. Keep stepping until you get to

the GetNext Successful Hook.

By now, your Iterator has read in the client data and marshalled it to Attributes

that are first stored in the conn Entry and then copied by the Input Map into the

Work Entry. Test this now by typing work in the Evaluate command field.

When you press Enter, this snippet of script gets evaluated.

23 and you will see the

Work Entry displayed as debug output in the log window.

23. Even a variable by itself is considered a script statement. The result of this statement is that the contents of the object is

displayed; in the above example this is the string representation of the Work Entry.

Screen capture filename: GettingStarted-69b.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 63

Because the output is not easy to read, press Ctrl+A to select “work” and replace it

with “task.dumpEntry(work)”. When you press Enter this scripted function call

actually writes messages to the log, just like it does when run from script inside

your solution

24, so you should now see an Entry dump in the output window.

24. This is what makes the Debugger so powerful: you can inspect and change any data or configuration settings dynamically by

calling any of the functions that you can do from script inside the AssemblyLine.

Screen capture filename: EvaluationofWork.eps

64 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

The Server Mode Connector is working, so stop the Debugger and we’ll keep

building.

The first thing your AssemblyLine needs is the logic to return a web page.

Implement this by adding a Script component and calling it “ReturnWebPage”.

Then enter the following script into this SC:

// First we grab the base from the HTTP property. Then we

// set up a variable to point to the Tutorial sub-directory

// -- you may have to edit this for your installation

//

var base = work.getString("http.base");

var path = "C:/Program Files/IBM/TDI/V6.1/examples/Tutorial/";

if (base == null) // Just in case :)

 base = new java.lang.String("/");

// Since getString() returns a java.lang.String, you can use the

// Java String .endsWith() function to check the extension of the

// file being requested by the client. You then set the properties

// for the return HTTP message that the Server Mode Connector

// will pass back to the browser in its reply.

//

Screen capture filename: EvaluateDumpEntry.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 65

if (base.endsWith(".gif"))

 work.setAttribute ("http.content-type", "image/gif")

else if (base.endsWith(".jpg") || base.endsWith(".jpeg"))

 work.setAttribute("http.content-type", "image/jpeg")

else

 work.setAttribute ("http.content-type","text/html");

// If this is a root or null request, add the name of the main web

// page ("index.html"). Note: Here we could also look for "..", to

// see if someone was trying to hack the file system.

//

if (base == "/")

 base = "/index.html";

// Now create a new Java File object with the path variable

// prepared above and the name of requested file.

//

var file = new java.io.File(path + base);

// Here you write the name of the file to the log. The

// java.lang.File object knows how to turn itself into a String

// when we use it like one.

//

task.logmsg ("File request: " + file);

// Finally, you can use the .exists() function to see if the file

// was found. If so, you pass it back in the http.body Attribute.

// If not, you set http.status to "file not found".

//

if (file.exists())

 work.setAttribute("http.body", file)

else

 work.setAttribute ("http.status", "NOT FOUND");

That was a long snippet, and with a lot of comments. We could of course have

implemented this logic as a series of Branches and AttMap components directly in

the AssemblyLine. In general, it is best practice to put as much in the

AssemblyLine Flow as possible, instead of ‘hiding’ it away in Hooks. However,

sometimes a well-written (and well-named) Script component can keep an

AssemblyLine from looking overly complex too.

In the Config Editor, click the Run button to start your Web server. Dial your Web

server again in a Browser. You will see this page:

66 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

In the TDI log you will see that the index.html page was requested. It was a null

request, but your scripted code changed this to reference the index page. Clicking

on the topmost link will take you to OtherPage.html, which has a link to send you

back again.

If you hold the mouse over the link at the bottom of the index page, you should

see this text in the browser's status window: http://localhost/StartAL. This is a

hyperlink to a service that you are about to add to your AssemblyLine. Start by

adding a Branch that you call “If StartAL”. Drag it above the ReturnWebPage SC

and give it a simple Condition like this:

Screen capture filename: SampleWebsite.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 67

Now right-click on the Branch and add a new Function component. Choose the

AssemblyLine FC and call it StartMyAL.

This Function allows you to launch other AssemblyLines, either on this server, or

one on another machine. For this example, simply click on the AssemblyLine

menu and choose the CSVtoXML AssemblyLine. The default setting for Execution

Mode is Run and wait for result. Change this to Run in background, which

means that the AssemblyLine you start here will run in parallel with the

WebServer AssemblyLine. This lets your main AssemblyLine send a reply back to

the client immediately. If you had retained the Run and wait for result setting, the

browser would hang waiting for a reply until the ″CSVtoXML″ AssemblyLine

completed.

Create this return message by right-clicking on the Branch again and adding an

AttMap (attribute map) component called ReportOK. Here you add a single

Attribute called http.body. Set the type of map to Expression

25. Then you can

simply enter the string value (web page) to return:

25. Note that with Expression mapping, you can also embed references to data and configuration settings. See the IBM Tivoli

Directory Integrator 6.1: Users Guide for more information on this powerful feature.

Screen capture filename: SimpleCondition.eps

68 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Here is the HTML code for your cutting-and-pasting convenience:

<HTML>

 <HEAD>

 <TITLE>AL StartResult</TITLE>

 <META HTTP-EQUIV="REFRESH" CONTENT="2;URL=/index.html"/>

 </HEAD>

 <BODY>

 <H3>

 <P>AssemblyLine Started!</P>

 </H3>

 </BODY>

</HTML>

The <META> tag will cause the page to refresh, going back to index.html.

Our solution is almost complete. The only problem we have now is that even if the

Branch evaluates to true (i.e. that http.base contains “StartAL”), flow will still end

up in the “ReturnWebPage” SC and the contents of http.body will be overwritten.

To prevent this, add a second Branch and call it “Else NOT StartAL”. Then, in the

Details window for the Branch, select the “Else” Type setting.

Screen capture filename: GettingStarted-75.eps

Chapter 3. Introducing IBM Tivoli Directory Integrator 69

Finally, drag the “ReturnWebPage” Script component on top of this new Branch,

which will make it appear under it in the list. Your AssemblyLine components list

should look like this now:

Start your AssemblyLine and enjoy your running web server.

Screen capture filename: GettingStarted-76.eps

Screen capture filename: CompletedAL.eps

70 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Final thoughts

Although IBM Tivoli Directory Integrator makes building data flows fast and easy,

the quality of the resulting solution is dependent on your understanding of the

problem being solved. Design and implementation decisions are still your

responsibility, but IBM Tivoli Directory Integrator can help you over the platform

and vendor technology obstacles that otherwise block your vision and limit your

imagination.

When you approach an integration problem at the data flow level, you reduce

complexity. This gives you gains across the board: in deployment speed, accuracy

of the solution, robustness, maintainability, and so forth. In fact, as you start to

think in terms of the simplify and solve mantra, you will see your infrastructure

and its integration possibilities from a whole new perspective.

IBM Tivoli Directory Integrator continues making a difference long after your

solutions are completed and deployed. As your business and technical

requirements change, IBM Tivoli Directory Integrator lets you adapt and enhance

your solutions to meet these new challenges. That’s the beauty of IBM Tivoli

Directory Integrator: incremental implementation. You can grow your integration

solution (and your infrastructure) to fit your needs, as well as the environment

where it lives.

Perception is reality, and your perception is formed (and limited) by the toolset

you use. The choice is simple. You can continue to accept reality as you perceive it,

whittling away at the vision of your integration infrastructure in order to make it

fit the tools you are using — or you can switch tools.

Chapter 3. Introducing IBM Tivoli Directory Integrator 71

72 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Appendix A. index.html and OtherPage.html

You must create two new files in order to complete the examples in this manual:

index.html and OtherPage.html.

You must create these files in the examples/Tutorial directory.

index.html

The following is the content of the index.html file.

Copy and paste this code into a flat editor, for example, Notepad, and save the file

as index.html:

<html>

<head>

<title>IBM Tivoli Directory Integrator</title>

</head>

<body>

<h1>This sample website is powered by

IBM Tivoli Directory Integrator</h1>

Click here

to go to the other page.

Click here to run

the <i>CSVtoXML</i> AssemblyLine. </body> </html>

OtherPage.html

The following is the content of the OtherPage.html file.

Copy and paste this code into a flat editor, for example, Notepad, and save the file

as OtherPage.html:

<html>

<head>

<title>IBM Tivoli Directory Integrator - Page 2</title>

</head>

<body>

<h1>...and this is the other page.</h1>

</div>

Click here

to go to back to the main page.

</body>

</html>

© Copyright IBM Corp. 2003, 2007 73

74 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2007 75

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

76 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 IBM Tivoli AIX® Lotus

Notes pSeries® DB2 WebSphere®

OS/390® Domino iNotes CloudScape

Java, JavaScript and all Java-based trademarks and logos are trademarks or

registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix B. Notices 77

78 IBM Tivoli Directory Integrator 6.1.1: Getting Started Guide

����

Printed in USA

GI11-6480-01

	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Integrator library
	Related publications
	Accessing publications online

	Accessibility
	Contacting IBM Software support

	Contents
	Chapter 1. Introduction
	About this manual
	Scripting in JavaScript
	Installing IBM Tivoli Directory Integrator
	Installing the tutorial files

	Chapter 2. Simplify and solve
	How do you eat an elephant?
	Integration is communication
	Architecture
	AssemblyLines
	Connectors
	Parsers

	Chapter 3. Introducing IBM Tivoli Directory Integrator
	Rapid integration development
	Creating a new Config
	Creating an AssemblyLine
	Adding the Input Connector
	Mapping Attributes Into The AssemblyLine
	Adding the Output Connector
	Running your AssemblyLine
	Working with Hooks
	Schema conversion
	Adding the Join Connector
	Setting up Link Criteria
	Event-driven Integration
	Final thoughts

	Appendix A. index.html and OtherPage.html
	index.html
	OtherPage.html

	Appendix B. Notices
	Trademarks

