
Visual Introduction to WebService
with

Tivoli Directory Integrator
(Part 1)

Document Last Updated

July 4th 2007

From TDI Support Team
ibmdi@us.ibm.com

1

Visual Introduction to WebService
with

Tivoli Directory Integrator

Introduction to WebService

A Web Service (Server) is a software component that is described via WSDL and is capable of being accessed
(from a web Service Client) via standard network protocols such as but not limited to SOAP over HTTP.

[adapted from http://www.oasis-open.org/committees/wsia/glossary/wsia-draft-glossary-03.htm#_Toc198211]

While a Web Service supports four types of patterns of communication between the Server and the Client
(as defined in SOAP 1.2), we are going to consider only the Request-Response Message Exchange Pattern,
which is depicted below.

As you can see from this diagram, UDDI and WSDL are really optional. If you know the location and the
description of a Web service, you don't need to query the UDDI server and fetch the WSDL document. All you
need to do is to build a request in SOAP format, and send it via HTTP to the provider.

Note: The Web Service Server is usually referred as Web Service Provider and
Web Service Client as Web Service Consumer in standards literature. Here we
will use Server and Client instead to make the tutorial compatible with naming
conventions used by TDI Components.

Web Service Client UDDI Server

WSDL Document Server

Web Service Server

1

2

3

Query for Service

Query for Service Description

Send SOAP request + Receive SOAP
Response

2

Pre-requisites :

1. TDI version 6.1.1

Additional Considerations:
Ensure that the port used in the tutorial for the Web Service Server is available for use.
Screen shots show Windows directory naming conventions, so please modify to suit your OS.

The Successful creation of a Web Service Server and Client requires successful
completion of the following tasks (which are discussed in detail).

Section #1 – Creating a Web Service Server (provider)

Step#1 – Create an AL which will contain a WebService Server component

Step#2 – Create WebService Server Component

Step#3 – Create & Expose WebService Functionality

Step#4 – Create the WSDL file

Step#5 – Configure WebService Server parameters

Step#6 – Define Input & Output Maps for WebService Server

Step#7 – Define WebService Server Logic Flow

Section #2 – Creating a Web Service Client (consumer)

Step#8 – Create an AL which will contain a WebService client component

Step#9 – Configure the WebService Client Component

Step#10 – Add post processing logic (after the response has arrived)

Section #3 – Test the Web Services Server and Client

Step#11 – Start the Web Services Server (Provider)

Step#12 – Test WSDL file from a Browser

Step#13 – Invoke the Web Services Client (to consume the Web Service)

Step#14 – Check the Server logs to see if the results are as expected

3

Section #1 – Creating a Web Service Server (provider)
Step#1 – Create an AL which will contain a WebService Server component

Step#2 – Create WebService Server Component
This example will use an AxisEasyWSServerConnector to provide the core WebService Server functionality.

Advantages of Connector :

The Axis Easy Web Service Server Connector is part of the TDI Web Services suite. It is a simplified version of
the Web Service Receiver Server Connector in that it internally instantiates, configures and uses the
AxisSoapToJava and AxisJavaToSoap FCs.

4

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide115.htm#axisjavatosoapfc
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide118.htm#axissoaptojavafc
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide60.htm#wsrecvconn

Create a connector which embeds a Webserver: AxisEasyWSServerConnector

Name: WSServer

The functionality provided is the same as if you chain and configure these FCs in an AssemblyLine which hosts
the Web Service Receiver Server Connector. When using this Connector you forgo the possibility of hooking
custom processing before parsing the SOAP request and after serializing the SOAP response. That is, you are
tied to the processing and binding provided by Axis, but you gain simplicity of setup and use.

Another limitation of the AxisEasyWSServerConnector is that it can only be configured to handle one SOAP
operation--it cannot service several SOAP operation requests. But apart from that, the customer is free to use
whatever components he likes in the AssemblyLine that contains the Connector.

Limitations :
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide14.htm#
axiswsrecvconn

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/usersguide51.htm

5

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/usersguide51.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide14.htm#axiswsrecvconn
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide14.htm#axiswsrecvconn
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide60.htm#wsrecvconn

Step#3 – Create & Expose WebService Functionality
In TDI, AL operations are automatically exposed as the WebService functions and can be invoked remotely. In
this example we will create 2 operations using the Operation Tab of the AL.

There are no Operations associated with the AL when the AL is created. Please NOTE that this behavior is
different then AL’s imported from TDIv6.0.

You need to create a “Default” operation for the AL to be able to run the AL.

And this particular operation will not have any Input or Output defined.

In addition to the Default Operation, we need to create an operation called “GetFullName”.

6

Shown below are the two Input Attributes called “FirstName” & “LastName” which are the input parameters
that are being passed in from the WebService Client into this WebService Server.

The next step in the process of defining the operation is to enumerate the list of attributes which will be passed
back to the WebService Client. (This is defined in the “Output Attributes” Tab of the Operation).

Step#4 – Create the WSDL file
On the config Tab of the WebService Server Connector (AxisEasyWSServerConnector) enter the WSDL File
name and the URL that the WebService Client will be communicating to. Example, if the WebService Server
will be running on a machine called “tdihawk” and the port is 1998, you would define as http://tdihawk:1998/

Ensure you press the “Generate WSDL”, and successfully generate the WSDL file.

7

http://tdihawk:1998/

Step#5 – Configure WebService Server parameters
a. Configure Port
b. Enable “Tag Op-Entry”
c. Define the path to the WSDL file that you previously generated in Step4.
d. Choose a SOAP Operation

8

Step#6 – Define Input & Output Maps for WebService Server

Input Map: add “*”

Output Map: The attributes responseContentType and responseObjArray are used to define the contents
which will be sent back to the WebService Client. The additional three attributes, soapFault,
soapResponse, and wsdlRequested, provide default responses needed for the WebService Server

9

Step#7 – Define WebService Server Logic Flow
Click on Flow, create Script Component.
Name: ProcessInputParameters

And Add the Following Script to the Script Component
main.logmsg("work:*** " + work);
var attr = work.getAttribute("requestObjArray");
if (attr!=null) {

main.logmsg(" attr ************ " + attr.toString());
var vec = attr.getValuesVector();
if (vec.size()>0) {

 var inparr = vec.get(0);
 for (var i=0;i<inparr.length;i++) {

 main.logmsg(" Element " + i + " ******$$$$****** " + inparr[i]);
 // do something with each element like setting the work attribute

 }
 // do some good processing here

}
}

10

Add a Switch Component, name: ChooseOperation
Choose “AssemblyLine Operations”
Choose “Add Case Components” - will choose the 2 operations created.
Note: if click again, get a message already added.

Note – You can add additional Case Components by clicking on “Add Case components” button during solution
development.

11

In the ChooseOperation_GetFullname, click to add a script component.

Add script to setup the responseObjArray.

The Script that needs to be added to the response Object is ..

var obj = new java.lang.Object();
var responseObjArray = java.lang.reflect.Array.newInstance(obj.getClass(), 1);

// set up the STRING response
responseObjArray[0] = new java.lang.String("This is the String Returned Back");

work.setAttribute("responseObjArray", responseObjArray);

And Lastly…

Add script component to end of flow, name: DumpWork
main.logmsg(“ *** “ + work);

12

Section #2 – Creating a Web Service Client (consumer)
Step#8 – Create an AL which will contain a WebService Client component

Add a new AL named: WebServiceClient

Step#9 – Create WebService Client Component
Add a Function Component of type AxisEasyInvokeSoapWS

The Axis EasyInvokeSoapWS Function Component (FC) is part of the TDI Web Services suite.

This is a "simplified" web service invocation component: it is a stand-alone FC with its own Config screen, but
internally instantiates, configures and uses the following three FCs: AxisJavaToSoap, InvokeSoapWS and
AxisSoapToJava.

The functionality provided is the same as if you chain and configure these three FCs in an AssemblyLine. When
using this FC you lose the possibility of hook custom processing, that is, you are tied to the processing and
binding provided by Axis. However, you gain simplicity of setup and use.

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide119.htm
#axiseasyinvokesoapwsfc

13

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide118.htm#axissoaptojavafc
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide117.htm#invokesoapwsfc
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.1/referenceguide115.htm#axisjavatosoapfc

This Function Component (FC) provides a relatively simple way of invoking SOAP over HTTP web services.

This is how the communication flows:

Web service client <-> AxisEasyInvokeSoapWS FC <-> org.apache.axis.client.Call <-> Web service

The Function Component takes either an Object Array or an Entry Type:

Object[] -> AxisEasyInvokeSoapWS FC -> Object[]

or

Entry -> AxisEasyInvokeSoapWS FC -> Entry

In our Example, we will use the Entry Type to define the Output Attributes of the Function Component. Note
the Output of the Function Component is what is SENT to the Web Service Server, and the returned values
come in the Input Map.

14

Step#10 – Configure WebService Client Component

Set the WSDL File, SOAP Operation, and the Operation Parameters (as shown in the example below)

Define the Input Map

(Basically drag and drop the available Attribute called “return” on the Work side)

15

Define the Values for the Output Map

(The Output Map should have the two Attributes that are expected by the Web Service Server)

And set the Value for each the Output Map Attributes

(The example shown below uses literal values)

16

Section #3 – Test the Web Services Server and Client
Step#11 – Start the Web Services Server (Provider)

Please Note: If you get any Error in starting the Server Assembline Line, you need to fix this before proceeding
further. If you get an error like the one shown below, ensure that you have an AssemblyLine Operation called
Default (not “default”).

17

Step#12 – Test WSDL file from a Browser

Use a browser to go to http:\\webservice_server_url?WSDL (check the webservice_server_url defined in
Section 1 of Step#4) In this example - Bring up a browser, with url: http://localhost:1998/?WSDL

18

http://localhost:1998/?WSDL

Step#13 – Invoke the Web Services Client (to consume the Web Service)

It should provide a log like this..as it runs to completion..

And on the Server Side,

19

Step#14 – Check the Server logs to see if the results are as expected

Enable Detailed Long on the STEP 5 – for the Web Services Server Connector, then the
Server logs would be similar to this..

The End.

For any question about this document, contact ibmdi@us.ibm.com

Useful TDI Links

On-line Documentation Fix Packs ITDI Wiki News Group

Remote Assistance Tool Internal Site Internal News Group

20

http://web.cs.opensource.ibm.com/www/itdi/
http://www.ibm.com/software/support/assistonsite/
http://www.tdi-users.org/
http://www.ibm.com/software/sysmgmt/products/support/IBMDirectoryIntegrator.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc/welcome.htm

	Visual Introduction to WebService
with
Tivoli Directory Integrator
	(Part 1)
	Document Last Updated
	July 4th 2007
	From TDI Support Team
	Visual Introduction to WebService
with
Tivoli Directory Integrator
	Introduction to WebService
	Note: The Web Service Server is usually referred as Web Service Provider and Web Service Client as Web Service Consumer in standards literature. Here we will use Server and Client instead to make the tutorial compatible with naming conventions used by TDI Components.
	The Successful creation of a Web Service Server and Client requires successful completion of the following tasks (which are discussed in detail).
	Section #1 – Creating a Web Service Server (provider)
	Step#1 – Create an AL which will contain a WebService Server component
	Step#2 – Create WebService Server Component
	Step#3 – Create & Expose WebService Functionality
	Step#4 – Create the WSDL file
	Step#5 – Configure WebService Server parameters
	Step#6 – Define Input & Output Maps for WebService Server
	Step#7 – Define WebService Server Logic Flow

	Section #2 – Creating a Web Service Client (consumer)
	Step#8 – Create an AL which will contain a WebService client component
	Step#9 – Configure the WebService Client Component
	Step#10 – Add post processing logic (after the response has arrived)

	Section #3 – Test the Web Services Server and Client
	Step#11 – Start the Web Services Server (Provider)
	Step#12 – Test WSDL file from a Browser
	Step#13 – Invoke the Web Services Client (to consume the Web Service)
	Step#14 – Check the Server logs to see if the results are as expected

	Section #1 – Creating a Web Service Server (provider)
	Step#1 – Create an AL which will contain a WebService Server component
	Step#2 – Create WebService Server Component
	
	Step#3 – Create & Expose WebService Functionality
	Step#4 – Create the WSDL file
	Step#5 – Configure WebService Server parameters
	Step#6 – Define Input & Output Maps for WebService Server
	Step#7 – Define WebService Server Logic Flow

	Section #2 – Creating a Web Service Client (consumer)
	Step#8 – Create an AL which will contain a WebService Client component
	Step#9 – Create WebService Client Component
	Step#10 – Configure WebService Client Component

	Section #3 – Test the Web Services Server and Client
	Step#11 – Start the Web Services Server (Provider)
	Step#12 – Test WSDL file from a Browser
	Step#13 – Invoke the Web Services Client (to consume the Web Service)
	It should provide a log like this..as it runs to completion..

	Step#14 – Check the Server logs to see if the results are as expected
	Enable Detailed Long on the STEP 5 – for the Web Services Server Connector, then the Server logs would be similar to this..

