
TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 1

Synchronizing Data with
TDI 6.1.1
 by Eddie Hartman

Revised Why

10 June 2006 Change the definitions of Update and Delta modes here a bit here.

16 Nov 2006 Updated for version 6.1

24 May 2007 Updated for version 6.1.1

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 2

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 3

Table of Contents

1 How to use TDI to Synchronize Data .. 4
1.1 Introduction .. 4
1.2 The Entry Object .. 5

2 Delta Detection... 8
2.1 Change Detection Connectors.. 9

2.1.1 Iterator State – keep track of changes handled... 10
2.2 The Delta Engine.. 11

2.2.1 Setting Up the Delta Engine... 12
2.2.2 Performance and Risk .. 13

2.3 LDIF Parser with incremental LDIF .. 14
2.4 DSML v2 Parser... 14

3 Delta Tagging... 16
3.1 Delta Operation Codes ... 16
3.2 Delta Mechanisms and Tagging Levels ... 16

4 Delta Application ... 20
4.1.1 Manual Delta Application .. 20
4.1.2 Delta Mode... 22
4.1.3 Compute Changes .. 23

5 Working with Delta Operation Codes.. 25
5.1 Attribute and Value Operation Codes .. 26
5.2 Tagging Rules for Delta Operation Codes ... 27
5.3 Debugging Delta Operation Codes .. 28
5.4 Manual Delta Code Tagging .. 29

6 Conclusion.. 31

7 References .. 32

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 4

1 How to use TDI to Synchronize Data
The basic goal of data synchronization is to detect changes in one data source and then
propagate these to one or more targets.

Discovering and then applying changes is not as easy as you might think. Some systems
provide change event notifications, most do not. Many maintain some sort of modifications
list, but the level of detail available here varies greatly. A few systems allow you to
incrementally modify the values of selected attributes. However, the majority require you to
build a full data entry with all updates in place and then write this in a single operation.

So how do you deal with the differences in both feature sets and change resolution found in
the systems you want to sync? Who you gonna call? TDI gives you a framework for handling
this at a comfortably abstract level. To take full advantage of these capabilities a certain
amount of understanding is still required.

This document outlines the (updated) features in TDI 6.1 designed for building data
synchronization solutions. It also provides insight into how to use them. However, you must
already have some experience with TDI. At least, you should work through the video tutorials
found here: http://www.tdi-users.org/twiki/bin/view/Integrator/LearningTDI.

1.1 Introduction
Data synchronization must be as fast and efficient as possible. This means propagating only
data that has been modified. At the other end of the data-sync pipe at the synchronization
targets, only necessary changes should be written. This minimizes system and network traffic,
and to avoids triggering unnecessary replication. These two activities are called Delta
Detection and Delta Application in TDI terms, respectively:

Delta Detection Discovering that a change has occurred in a data source and
retrieving the information needed to propagate the change. This is
discussed in section 2 Delta Detection starting on page 8.

Delta Application Using these operation codes to drive the changes to other
stores/systems as efficiently as possible. Delta Application is detailed
in section 4 Delta Application.

In addition, when Delta Detection reads in changes, it tags this data with information about
what has changed and how. This information is then used during Delta Application to bring
targets in sync with the source, and is called Delta Tagging:

Delta Tagging Storing change information in the retrieved data Entry so that it can
be used in the next step, Delta Application. This is done by assigning
(i.e. tagging) delta operation codes to the data. These codes describe
the type of change: e.g. add, modify, delete, and so on. They are also
referred to as “operation codes” and “delta tags” in TDI literature.
More on this subject in section 3 Delta Tagging, page 16.

This may be starting to sound complex, so let me back up and say that some of the
information here (for example, the details of Delta Tagging) may not play a vital part in your
synchronization work with TDI. Don’t panic. Just keep reading.

There are specific features in TDI for detecting changes, just as there are for tagging data with
delta operation codes and applying these tags to drive changes to target systems. As you may
already have guessed, the remainder of this document is divided into three main sections, one
for each of the aspects of Delta Handling.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 5

But first, a little story about the TDI Entry data model.

1.2 The Entry Object
One of the cornerstones of understanding TDI is knowing how data is stored and transported
internally in the system. This is done using an object called an Entry. The Entry object can be
thought of as a “Java bucket” that can hold any number of Attributes (none, one or many).

Attributes are also bucket-like objects in TDI. Each Attribute can contain zero or more
Values, and these carry the actual data values that are read from (and written to) connected
systems. These Attribute Values are Java objects as well – like strings, integers and
timestamps1 – and a single Attribute can readily hold Values of different types. However, the
type of object used to store a Value is chosen by the component that reads it in, and is usually
made at the Attribute-level. As a result, all the Values of a single Attribute will tend to be of
the same type in most data sources.

Although the Entry-Attribute-Value paradigm matches nicely to the concept of LDAP
directory entries2, this is also how rows in databases are represented inside TDI, as are records
in files, IBM Lotus Notes documents and HTTP pages received over the wire. All data – from
any source that TDI works with – is stored internally as Entry objects with Attributes and
their Values.

There are a handful of Entry objects that are created and maintained by TDI. The most visible
instance is called the Work Entry, and it serves as the main data carrier in an AssemblyLine
(AL). This is the bucket used to transport data down an AssemblyLine, passed from one
component to the next during AL execution.

1 Although the Config Editor does not support its display, an Attribute value can conceivably be another Entry
object – complete with its own Attributes and values.
2 Since TDI has borrowed a good deal of terminology from the directory space, you will see a distinction
between terms that represent objects in the system (like an “Entry” object, which will be capitalized) and those
that refer to concepts (e.g. a directory “entry”, written in lowercase).

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 6

The Work Entry is available for use in scripting through the pre-registered variable work,
giving you direct access to the Attributes being handled by an AssemblyLine (and their
Values). Furthermore, all Attributes carried by the Work Entry are displayed in the Config
Editor in a window under the Component List of an AssemblyLine3.

3 Let me elaborate on this point: all Attributes that appear in Connector Input Maps and AttributeMap
Components will be shown in the Work Entry window. If you add or remove Attributes from work using direct
script calls, then these will not be visible here.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 7

So in summary, an Entry holds Attributes which in turn contains Values. These Values are
Java objects used to represent data values in the connected system.

In addition to holding Attributes, an Entry can also have a delta operation code that describes
how this record/row/entry has been changed (tagged by Delta Detection). The same applies to
Attributes, which can also be hold delta tags: one for itself, and one for each Value it contains.
This is discussed in more detail in section 3 Delta Tagging on page 16.

But first: armed with this knowledge of the TDI Entry data model, it’s time to look at Delta
Detection.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 8

2 Delta Detection
Delta Detection is the discovery and retrieval of changes. The change information is then used
to tag retrieved data with delta operation codes that reflect the type of changes made.

More often than not, the goal of a Delta Detection implementation is to return only the deltas.
So if you are reading from a data source with thousands or millions of data entries, a typical
run of your AssemblyLine will process only the subset that have changed.

Since different systems offer different change notification features (or not), TDI has a variety
of ways of setting up Delta Detection:

• Change Detection Connectors are used for LDAP Directories, Microsoft
ActiveDirectory and Exchange, SQL databases and Domino/Notes (for use with any
.nsf file).

• The Delta Engine is used to compute changes for systems that don’t otherwise
provide change notification (for example, flat files or similar data stores). Any
Connector in Iterator mode has a Delta tab for configuring Delta Engine behavior.

• The LDIF Parser tags Entries as it reads through an incremental LDIF4 file. Unlike
the two preceding items above, the LDIF Parser does not “detect” changes. Instead, it
interprets the delta codes found in incremental LDIF files, as these contains only
information about changes to entries. If this Parser is used on a full LDIF (i.e. one that
is not incremental) then no tagging will occur5.

• The DSML v2 Parser tags data on input with delta operation codes that correspond
with DSML operation tags. The Parser can also produce DSML v2 request messages
based on delta operation codes set for Entries and Attributes.

The full list of Delta Detection features, along with details on how they operate is found in

4 Full LDIF files hold complete entries, while incremental LDIF files contain only changes to data.
5 Of course, you use the Delta Engine while reading full LDIF files (like those created from directory dumps) to
detect changes between subsequent iterations.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 9

 Table 1 - Change Detection Mechanisms on page 17.

Regardless of the mechanism used, the end result is an Entry bucket with delta operation
codes set, also known as a Delta Entry. Let’s take a closer look at how each of these
mechanisms does its magic.

2.1 Change Detection Connectors
A Change Detection Connector leverages features available in the underlying data source for
locating and returning changed entries.

Some data sources provide full delta mechanisms – like LDAP directory changelogs – which
are accessed via API or protocol-based calls. Other Change Detection Connectors need to do
more heavy lifting, or rely on logic that must be plugged into the connected system. For
example, the RDBMS Changelog Connector depends on stored procedures that maintain
changelog data for specified tables. These shadow changelog tables are handled by the
RDBMS Changelog Connector in much the same way that the LDAP Changelog Connector
deals with a directory changelog.

Common to all these TDI components is that they operate in Iterator mode. Furthermore,
they all poll the connected system looking for changes. As a result, they each offer a timeout
parameter to control how long the Connector will wait for new changes to appear; as well as a
Sleep interval option to determine how long to wait between polls.

Where supported, Change Detection Connectors also offer a Use notifications checkbox
that instructs the Connector to register for change events instead of polling (for example,
doing a persistent search into a directory). Note that this type of synchronous configuration
can result in lost changes if the connection to the data source fails. Fortunately, TDI always
consults the changelog in order to pick up any unhandled changes since the previous event,
regardless of which specific change the notification indicated.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 10

2.1.1 Iterator State – keep track of changes handled
Another important feature is that all Change Detection Connectors provide an Iterator State
Key parameter for keeping track of the last change handled, so that next time you start your
Sync AL, it can pick up processing changes where it left off.

This feature uses the System Store6 to keep track of the starting point for a Change Detection
Connector (for example, the changenumber of a directory changelog). The value of the
Iterator State Key parameter must be globally unique as it serves as the key in the System
Store under which the Iterator State is kept. If you have multiple ALs that use Change
Detection Connectors, they must each have their own Iterator state data.

The content of the Iterator State Key works in combination with Connector configuration
settings provided for selecting the next change to process – the “Start at...” parameter(s). For
example, the IBMDirectoryServer Changelog Connector provides a “Start at changenumber”
parameter where you can enter the changelog number where processing is to begin. This
parameter can be set to either a specific value (e.g. 42), to the first change (i.e. 1), or to
“EOD” (End of Data). The EOD setting places the cursor at the end of the changelog in order
to only process new changes.

6 The System Store is a feature of TDI used to persist operational data (like Delta Engine snapshots). By default
the System Store feature uses the bundled Derby(Cloudscape) database, but can configured to use DB2, Oracle,
Microsoft SQL Server, or any other compatible RDBMS.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 11

As long as no Iterator State Key is specified, the Change Detection Connector will continue to
use the “Start at...” setting each time the Connector initializes and prepares to retrieve
changes7. The same will happen even if Iterator State Key does have a setting, but there is no
state value stored yet.

So, the very first time you run the AL with the Change Detection Connector there will be no
previously set Iterator State Key information in the System Store, so the “Start at...”
parameter(s) will be used. As the Connector cycles through the input source, it updates the
Iterator State, keep track of changes processed. On subsequent executions, the “Start at...”
settings will be ignored and the Iterator State Key value applied instead8.

Another important setting is “State Key Persistence” parameter, which controls when the
snapshots are committed to the System Store. The default setting, which is recommended for
most situations, is “End of cycle” which means that this Iterator state value is only persisted if
the AL cycle handing the current change completes.

Where supported, using a Change Detection Connector is the simplest solution. However, the
Delta Engine (described next) is also a proven, enterprise-strength tool for detecting
modifications in data sources that do not provide change notification features.

2.2 The Delta Engine
When the underlying data store does not provide any delta information then you can use the
Delta Engine to discover changes for you.

 This feature is extremely handy when dealing with large sequential data sources (for
example, HR files dumps), but can also be used in conjunction with other Delta Discovery
components9.

The Delta Engine is available for any Connector in Iterator mode. It works by taking
snapshots of incoming Entries and writing these to the System Store.

The first time the AssemblyLine executes, there are no snapshots. All Entries read in by the
Iterator are written to the Snapshot Database and returned for AssemblyLine processing with
the operation code “add”.

On each successive run, Entries read are compared with earlier snapshots. Based on this
comparison, all differences are noted and tagged in the Entry, and the snapshot database is
updated to reflect the new state of the data.

Note that only Attributes in the Input Map of the Iterator will be stored in the Delta table and
used to identify changes. This means that altering the Input Map between one AL execution

7 Also known as performing the Iterator operation selectEntries(), where the data set for iteration is selected.
8 TDI stores Iterator state values in the System Store like any other persistent objects, so you can access this
information through the system.getPersistentObject(), system.setPersistentObject()
and system.deletePersistentObject() methods, using the Iterator State Key value as the key
parameter.
9 As you will see in a bit, not all Change Detection Connectors return the same level of detail when it comes to
delta information. Systems like Microsoft ActiveDirectory and Domino return only change status for the whole
Entry, and not for individual Attributes and Values. The Delta Engine can be used here to make up for limited
delta notification capabilities.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 12

and the next will affect Delta operations. Best practice is to delete the Delta table for an
Iterator if the Input Map is changed.

The Delta Engine works in two passes.

1. First, as the Iterator reads through the input data, each Entry is compared with its
corresponding snapshot (if one is found). Based on snapshot absence or comparison,
the Delta Engine returns this data tagged with the relevant operation codes: add,
modify or unchanged.

2. Once End-of-Data is reached by the Iterator, the Delta Engine makes a second pass
through the Delta table looking for those snapshots not accessed during the first pass.
These are then returned as deleted Entries.

2.2.1 Setting Up the Delta Engine
You set up Delta Engine parameters in the Delta tab of an Iterator mode Connector.

This tab has the following settings:

Enable Delta This checkbox must be selected in order to turn on the Delta
Engine and give you access to the other parameter settings.

Unique Attribute Name The Input Map Attribute that uniquely identifies each entry in
the snapshot database. Note that you can use an Advanced
Mapped Attribute to combine multiple Attributes to create a
unique value.

Delta Driver This is a backwards-compatibility option which allows you to
access the deprecated BTree Delta store10 used in older

10 Note that for 6.0 and earlier versions, the “Cloudscape” option in this drop-down indicates that the System
Store will be used, which can easily be configured to use another compliant RDBMS, like DB2, Oracle or

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 13

solutions. Only the “System Store” option can be set in TDI
6.1.

Delta Store Name of the System Store table that will be dedicated to this
Iterator’s Delta snapshot data. The Delete button next to this
parameter will drop the snapshot table, so the next AL run
will create a fresh baseline for delta detection.

Read Deleted Must be selected for the Delta Engine to return deleted
Entries.

Remove Deleted This flag tells the Delta Engine to remove snapshots for
deleted Entries as they are returned. Otherwise they will be
reported as deleted on the next run of the AL as well.

Return Unchanged If this flag is set then Entries that have not been added,
modified or deleted will be returned. These are tagged with
the operation code unchanged.

Commit This setting controls when the snapshot is saved to the
Snapshot Database. It’s recommended to set this parameter to
“One end of AL cycle”.

Although Delta tables can be accessed with both the JDBC Connector and the SystemStore
Connector, it is unadvisable to make changes without a deep understanding of how these
tables are structured and handled by the Delta Engine (in other words, do so at your own risk).

2.2.2 Performance and Risk
Although the Delta Engine will work with all types of input data sources (as opposed to the
Change Detection Connectors) there are issues associated with the Delta Engine that you need
to be conscious of:

1. The Delta Engine maintains a shadow copy of your input data source. If you have a
large input data set, then the snapshot database will also be big.

2. Running with the Delta Engine will impact the performance of your AssemblyLine.

3. As opposed to the Changelog Connectors, the Delta Engine is based on iterating
through your entire input dataset. So although you spare target systems from
unnecessary updates, your solution will read extensively from your input source.

4. Should the snapshot database get out-of-synch (for example, if updates are performed
directly to the target systems) then this will not be automatically detected by the Delta
Engine. Instead, you may need to delete the snapshot database in order to build a new
baseline11.

Microsoft SQL Server. You will find more information on how to set up the System Store to use another
database system here in the TDI Users Guide:
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1/usersguide24.htm#system
store
11 The best course of action is to build an AssemblyLine for this purpose. It should be one that not only
initializes the snapshot database, but also updates targets with necessary changes: a “Baseline” AL.

Technical note follows:
If you write your Sync AL correctly, then you can easily call it using the AssemblyLine Function (AL FC) from

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 14

Even so, the Delta Engine gives you a fast and reliable way of detecting changes where you
otherwise couldn’t.

2.3 LDIF Parser with incremental LDIF
The LDIF Parser can be used to both write “incremental” LDIF output based on Delta
operation code tagging in the Work Entry and its Attributes, as well as to read these files and
return the corresponding Delta Entries. Of course, it can also be used with “full” LDIF files,
although the Parser will do no tagging of delta operation codes in this case.

The difference between these two types (incremental and full) is that incremental LDIF files
contain only information about changed entries:

version: 1

dn: All Employees
changetype: modify
add: members
members: abnevanm408
-

dn: Coffee Drinkers
changetype: delete
-

The above example has two entries: the first one (with the dn value “All Employees”) signals
that the value “abnevanm408” is added to the members Attribute. The second entry
indicates deletion of the “Coffee Drinkers” entry itself.

Those LDAP Changelog Connectors (like the IBMDirectoryServer Changelog Connector)
perform Attribute and Value tagging by using this Parser on the incremental LDIF
information kept in the changelog.

2.4 DSML v2 Parser
Similar to the LDAP Parser, the DSML v2 Parser can return Entries and Attributes with delta
operation codes set based on DSML request messages (like modifyRequest, addRequest, etc.).

It can also write DSML v2 messages based on Entry and Attribute delta code tags. However,
this component only handles operation codes at the Entry and Attribute levels (not for
individual values) since this is all that is supported by the DSML standard.

a second “Set Delta Baseline” AL. Note that if you call an AL with the AL FC using manual/cycle mode, it
disables the called AL’s Feeds section. Instead, the Attributes you pass into the called AL (via the AL FC’s
Output Map) are fed directly into the called AL’s Flow. So, by setting delta operation codes manually in the
calling AL, you can “fool” your called Sync AL Flow into handling the data you pass it just like it does the Delta
Entries returned by its own Iterator. The end result is that you reuse the logic in the Flow section of your Sync
AL to handle updating targets for your “Baseline” AL.

This will also require defensive configuration of Delete mode Connectors to deal with data that is already
removed from targets. Additionally, leveraging the Compute Changes feature of Update mode Connectors will
ensure that only necessary write operations are performed (see section 4.1.3 Compute Changes on page 23 for
more details on Compute Changes).

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 15

Maybe it’s time to get some more coffee or stretch your back. Then it’s on to Delta Tagging.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 16

3 Delta Tagging
Delta Tagging is the process of marking retrieved data with delta operation codes, and is
typically done during Delta Detection.

Each operation code describes how the unit of information it is attached to has changed in the
source system. As mentioned previously, Delta Tagging is done by all Change Detection
features. As you will see in section 4 Delta Application, these delta operation codes are used
by TDI to correctly apply changes to target systems. Before we take a look at how tagging is
done by TDI components, we will dig into what the handful of delta operation codes mean.

3.1 Delta Operation Codes
Not that you will necessary need to know much about this – it is probably enough to
understand this concept in more general terms. So at least skim this section. If you want to
know more, check out section 5 Working with Delta Operation Codes on page 25. Knowing a
little about the delta operation codes and their meanings can go a long way when you start
debugging your Sync AL.

As mentioned earlier, an Entry object carries a delta operation code. During Delta Tagging,
this code is set to a value corresponding to the type of change detected: add, delete, modify or
unchanged. These operation codes are not visible in the Config Editor, but you can access
them from JavaScript through a couple of handy function calls found in the Entry and
Attribute objects12.

An Attribute also has an operation code. This code is analogous to that found in Entry objects,
and indicates whether an Attribute has been added, replaced, deleted, modified or is
unchanged. Furthermore, Attributes keep track of operation codes for the Values they contain.
As with the Entry object, an Attribute offers functions for reading and setting its own
operation code, as well as those of its Values.

In addition to tagging done automatically by TDI, there are situations where you may want set
these values yourself; For example, when you are getting your change information from some
other source than one of the Delta Detection mechanisms (like receiving SOAP over IP, or
reading messages from MQ). More likely however is that you will want to branch your
AssemblyLine flow logic based on this code (as shown in the section on Delta Application).

If you want more technical insight into delta operation codes, as well as details into how each
Delta Detection feature assigns them, see section 5. Working with Delta Operation Codes on
page 25.

3.2 Delta Mechanisms and Tagging Levels
Below is a list of the various Delta Mechanisms along with details on what they return.

12 For example, in the Debugger you could enter the following script into the Evaluate field:

 task.logmsg(work.toDeltaString())

This displays an exploded view of the Entry object, including all delta operation codes. You can also use this in
script code used in your AL as well.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 17

 Table 1 - Change Detection Mechanisms
LDIF Parser Tags Entries and Attributes/values.

DSML v2 Parser Tags Entries and Attributes (not values).

Delta Engine Tags Entries and Attributes/values.

Note that the Delta Engine will only report a
single change per entry. For example, if this data
has been added, modified and then deleted since
the last iteration, only a single “delete” tagged
Entry is returned.

IBMDirectoryServer
Changelog Connector

Tags Entries and Attributes/values.

13Returns type of change in an Attribute called
“changeType” with the value “add”, “modify”
or “delete” (or “rename” for a rdn/$dn change).

Netscape/iPlanet
Changelog Connector

Tags Entries and Attributes/values.

13Returns type of change in an Attribute called
“changeType” with the value “add”, “modify”
or “delete” (or “rename” for a rdn/$dn change).

13 This information is included for the sake of completeness. Although you may see these Attributes used in pre-
6.0 Fixpack3 Configs to differentiate between change types, it is recommended that you use the delta operation
code of the Work Entry to do this in your own solution.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 18

Active Directory
Changelog (v.2) Connector

Tags Entries, but not Attributes/values.

13Returns type of change in an Attribute called
“changeType” with the value “update” (for both
add and modify) or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

Furthermore, only a stub is retained for deleted
entries. As a result, deleted entries returned by
this Connector do not contain any attributes
except the following:

• USN
• targetdn
• changeType

You must use USN to reference corresponding
entries in synchronization targets.

Domino
Change Detection Connector

Tags Entries, but not Attributes/values.

13Returns type of change in an Attribute called
“$$ChangeType” with the value “add”,
“modify” or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

Furthermore, only a stub is retained for deleted
entries. As a result, deleted entries returned by
this Connector do not contain any attributes
except the following:

• $$UNID
• $$NoteID
• $$ChangeType

You must use $$UNID to reference
corresponding entries in synchronization targets.

RDBMS
Changelog Connector

Tags Entries, but not Attributes/values.

13Returns type of change in an Attribute called
“IBMSNAP_OPERATION” with values “I”

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 19

for Inserted (add), “U” for Updated (modify) or
“D” for Deleted (delete).

Note that for each Entry returned, control
information (counters, operation, time/date) is
moved into Entry Properties14, while data values
are stored as Attributes.

Exchange
Changelog Connector

Tags Entries, but not Attributes/values.

13Returns type of change in an Attribute called
“changeType” with the value “update” (for both
add and modify) or “delete”.

Note that this Connector will only report a single
change per entry. For example, if this data has
been added, modified and then deleted since the
last iteration, only a single “delete” tagged Entry
is returned.

Furthermore, only a stub is retained for deleted
entries. As a result, deleted entries returned by
this Connector do not contain any attributes
except the following:

• USN
• targetdn
• changeType

You must use USN to reference corresponding
entries in synchronization targets.

14 Properties are accessible through the Entry methods getProperty() and setProperty().

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 20

4 Delta Application
Regardless of how you get hold of change information, the ultimate goal is to apply the delta
to one or multiple targets.

Writing to data sources is done with the appropriate Connector in one of the output modes:
AddOnly, Update, Delete or Delta. When using AddOnly, Update or Delete modes, it is up to
you to set up the AssemblyLine flow logic so that the correct data operation is performed
depending on the type of changes reflected in the Delta Entry. Delta mode on the other hand
does this for you. However, only the LDAP Connector supports this mode. So if you are
synchronizing to an LDAP directory, you can skip straight to sub-section 4.1.2 Delta Mode on
page 22.

4.1.1 Manual Delta Application
Prior to the advent of Delta mode in version 6.0, the methods outlined in this section were all
you had for applying a delta to target systems. If you can use Delta mode, then do so. It will
make your ALs smaller and simpler, leaving the grunt work to TDI.

Without the option of Delta mode, the AssemblyLine must be set up to differentiate between
add/modify and delete change types. If the Connector you plan to use for output supports
Update mode, then this will deal with both add and modify changes for you. Deleting data is
the job of Delete mode.

Configuring your AssemblyLine to handle add, modify and delete operation codes can be
done in a number of ways. Note that the first couple of method outlined below makes use of
the AL Switch and Branch components, and is best practice for building legible, maintainable
solutions. The following two approaches are included here for the sake of completeness, and
to help you decipher Configs built with earlier versions.

Switch/Case TDI provides a Switch component that can be configured to
switch on the Delta operation code set in the Work Entry. There
is also a button in the Switch configuration screen to
automatically create the Case elements for each Delta code.

Branches Your AssemblyLine can either use a Switch based on the Work
Entry operation code, or two Branches: An IF Branch followed
by an ELSE IF Branch. The IF Branch needs a scripted
Condition that is then set to the following:

 ret.value = (work.getOperation() == “delete”);

This must be done as a scripted Condition since it is
recommended to use the delta operation code instead of a
change-type Attribute (which varies between systems).

If for some reason you can’t use the delta operation code, then
you can set up a simple Condition to check the change-type
Attribute value instead.

 changeType EQUALS delete

Under this Branch you have your Delete mode Connector to

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 21

remove entries from the connected system.

Just after the “IF” Branch you add the “ELSE IF” Branch to
handle your Update mode Connector to deal with “add” and
“modify” changes.

Before Execute Hook15 Just to repeat myself again (and again): this is not
recommended practice in 6.1; use Branches instead. However,
since you may have to read and maintain an older Config, read
on.

The “Before Execute” Hook is present in every Connector,
regardless of mode. If enabled, the Hook script is executed on
each AL cycle before any other action is taken by this
component.

So one pre-6.0 approach is using the Before Execute Hook to
conditionally ignore the current Entry if the change type is
inappropriate for the mode of this Connector:

if (!work.getString(“changeType”).equals(“delete”))

 system.ignoreEntry();

The above example script would be in the Before Execute
Hook of a Delete mode Connector, and would pass control to
the next component if the Attribute called changeType did not
have the value “delete”.

Script Component (SC)15Another common pre-6.0 tactic was to set up a Connector in
Passive State, with the correct Output Map and Link Criteria.

Passive State ensures that the Connector is initialized at AL
startup and closed when the AssemblyLine terminates, but not
executed automatically during AL cycling. Instead, the
Connector is manually called from a Script Component in the
AL:

if (work.getString(“changeType”).equals(“delete”))

 db2Connector.deleteEntry(work)
else
 db2Connector.update(work);

This snippet drives a Connector called “db2Connector”16, using
either the deleteEntry() or update() method as needed.

Note that this can be done from any block of script, like a Hook
or a scripted Connector. However, placing this kind of flow

15 Repeat after me: the recommended method is to use Branches.
16 All AssemblyLine Components are automatically registered as script variables, which is why it is important to
name them as you would a variable.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 22

logic in an SC makes your AssemblyLine more legible. Even
so, as stated before, use Branches. ‘Nuff said.

4.1.2 Delta Mode
Delta Mode not only combines Update and Delete mode handling (including offering many of
the same Hooks), it will also perform incremental modify operations to the connected system.
This means only writing the specific values that have changed.

Incremental modifies represent a significant performance improvement since load on the data
source and network is minimized, and particularly when working with changes to group
membership or other massively multi-valued Attributes.

In order for Delta Mode to work, the Connector must receive a Delta Entry (i.e. an Entry
tagged with a valid delta operation code17). This is the only mode that requires (and uses)
these delta tags, and highlights a basic difference in how Update and Delta modes function.

Update mode differentiates between add and modify operations by first performing a lookup
using the Connector’s Link Criteria. If a match is found then the Connector modifies this
entry. Should the lookup fail to find matching data, a new entry is added. In other words,
changes are applied based on the current state of the target system. As a result, an Entry
tagged as modify might result in an add operation instead, for example if the entry was deleted
after it was modified. This can only occur for data sources that provide a complete historical
changelog (as opposed to just an operation code or tombstone). Once the Changelog Iterator
reaches this delete, the entry just added will be deleted again. The end result is source and
target being in sync.

Delta mode on the other hand “assumes”18 that the source and target were previously in sync,
and that any differences are encapsulated in the Entry object. One side-effect is that delta
information must be applied in the same order as it occurred in the source. Although the
above example situation (delete after modify) would result in an error for Delta mode, you can
deal with this by scripting the Error Hooks. Remember, your sync AL will continue to handle
changes, eventually getting to the delete and setting things right in the target.

You can control which operation codes Delta mode will handle, as well as how it deals with
untagged (unwanted) entries. This is done by pressing the Delta button19 at the top of the
Connector Details panel.

17 In fact, all Entries have some sort of delta operation tag set. However, unless the Entry is coming from some
Delta Detection mechanism, it will carry the default tag of generic. This non-delta tag simply indicates that the
Entry carries no information about changes – merely data.
18 This assumption of source and targets being in sync prior to Delta mode operation may also limit the
applicability of Delta mode to a specific scenario – e.g. when changes can occur to targets outside Delta
Handling in TDI.
19 This button only appears to be a button when you move the mouse over it.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 23

This brings up the Permitted Delta Operations dialog.

If the checkbox at the bottom of the panel shown above is unselected, then the Connector will
simply ignore Entries tagged as generic, passing control to the next component. Otherwise, it
results in an error; i.e. an exception is thrown and must be handled in an Error Hook or the
AssemblyLine will stop.

In addition to simplifying data synchronization AssemblyLines, Delta Mode also makes the
most effective use of your LDAP server when performing delta operations. Instead of first
retrieving the entire entry to be modified, applying changes and then writing all this data back
to the target (like Update mode does), only the changes prescribed by the Attribute and value
operation codes are propagated.

4.1.3 Compute Changes
No treatise on data synchronization with TDI would be complete without a note on the
Compute Changes option.

This flag is available for Update mode, and instructs TDI to compare the Attributes in the
Output Map with the corresponding ones read into the current20 Entry object by the initial
lookup operation. If no differences are detected, then the modify operation is not carried out.

20 Any lookup operation (as performed in Lookup, Update or Delete Modes) reads data into both conn and an
additional Entry object called current. The rationale behind this comes from the needs of Compute Changes:
After the lookup, data is read into conn and current. Then the Hook Flow of the Connector gets to the Output
Map, where the data to write is copied from work into conn. Then Compute Changes behavior kicks in (if turned
on) and each Attribute value mapped into conn is compared with data in current in order to decide if anything is
different. If no differences are detected then the modify operation is skipped; otherwise the conn Entry is written.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 24

Using this option is an easy way to avoid triggering the replication features in your target
system due to unnecessary changes.

WARNING: this next section may require some level of technical geekness to enjoy.

Read on if you gotta know more.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 25

5 Working with Delta Operation Codes
The operation code for an Entry can be accessed directly via the getOperation() and
setOperation() methods of the Entry object. These function calls use String values for the
various change types21. Here is the list over valid Entry operation codes:

 Table 2 - Entry-level Delta Operation Codes
generic

The default operation code for Entry objects returned
by any other means than from one of the Delta
Detection mechanisms. This code means that there is
no delta tagging available. An Entry with this
operation code is considered untagged and not a Delta
Entry.

add

Signals that the Entry object is new and should be
added to the target(s).

modify

The entry has been modified. This operation code also
implies that there may be more delta tags available for
contained Attributes, and possibly even the Attribute
values (discussed more in detail below).

delete Indicates that the Entry was deleted from the source.

unchanged

Unlike generic, this is an actual delta tag that is used
for unmodified Entries. Only some Delta Detection
mechanisms, like the Delta Engine, give you the
option to return Entries with the unchanged code.

Note that these codes are case-insensitive when you set them – so “ADD” is equivalent to
“add”. If an invalid code is used in the setOperation() method (for example, null or an
unrecognized value like “whatever”) then the Entry is tagged as generic.

Although setOperation() does not care about case, getOperation() calls return lowercase
values as shown in this example which writes a log message if the Work Entry has the delete
operation code tag:

if (work.getOperation() == "delete")
 task.logmsg("Work Entry is tagged for deletion.");

The getOperation() call can be used in Branches in order to differentiate between Deletes and
Adds/Modifies (as mentioned in the section on Delta Application). You do this by using the
scripted Condition at the bottom of the Branch dialog. Here you would use code like this:

21 Although only the first character of any code is necessary to make the call, it is good practice to spell the
operation code out completely when using it. This will improve the legibility of your Config. Note also that these
values are localized and will always use the English codes shown here.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 26

ret.value = work.getOperation() != "delete";

This would be the equivalent of the simple Condition: changeType NOT EQUALS "delete".

5.1 Attribute and Value Operation Codes
Attributes have a similar set of operation codes. The meaning of these codes is listed in the
table below:

 Table 3 – Attribute-level Delta Operation Codes
replace The default operation code for Attributes, this tag

means that the Attribute should be written as-is, with
all values to the target(s) – i.e. replacing whatever is
already there.

add

Signals that the Attribute is new and should be added
to the entry in target(s).

modify The Attribute has been modified. This operation code
also implies that there may be more delta tags
available for the values of this Attribute.

delete Indicates that the Attribute was deleted from the entry
in the source.

unchanged Signals that this Attribute is unchanged.

These codes are read and written in JavaScript code by using the Attribute methods
setOperation() and getOperation(). Setting an invalid code will result in default
tagging (replace).

For example, the following script first gets the “FullName” Attribute from the Work Entry
and then sets the operation code to modify22:

var fullName = work.getAttribute(“FullName”);
fullName.setOperation(“modify”);

22 It is important to understand that when you get an Attribute from an Entry (as with the getAttribute() method)
you actually get a reference to this Attribute, not a copy. So any changes you make directly affect the actual
Attribute itself that is stored in the Entry.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 27

Drilling down to the next and final level, Attribute values can be tagged as either unchanged,
add or delete. The methods for working with Value-level delta tags are also found in the
Attribute object – setValueOperation() and getValueOperation() – both of
which require an index parameter that indicates which value to apply the tag to.

fullName.setValueOperation(0, “delete”);

This snippet sets the operation code for first value23 of the fullName Attribute to delete.

This is a lot of technical information to digest, but keep in mind that TDI will take care of
most operation code tagging and interpretation for you. However, you should at least be
familiar with the details of how this is done in order to handle those situations where the built-
in features fall short of your requirements.

Now that we’ve looked at the various levels of operation code tagging, the next logical step is
to see how these relate to each other.

5.2 Tagging Rules for Delta Operation Codes
Even though an Entry object, its Attributes and their Values can all carry different operation
codes, these tag values work together in concert to describe how data has been changed. To
do so, they must all follow the TDI operation code tagging rules:

• If an Entry is tagged as generic, add, delete or unchanged, then its Attributes and their
Values will not be tagged with significant operation codes. Although these should be
set to default values, they will regardless be ignored by Delta Application logic.

• If an Entry carries the modify tag, then its Attributes may be tagged as replace, add,
delete or modify.

Furthermore:

o If an Attribute has an operation code of add, delete, replace or unchanged,
then any tags set for its values will be ignored – in other words, all values will
handled by Delta Application logic as indicated by the Attribute’s operation
code.

o If an Attribute has an operation code of modify, then at least one Value must be
tagged as either add or delete

As you can see, the modify tag has special significance at both the Entry and Attribute level in
that it implies the presence of delta operation codes for objects it contains. However, TDI
does not enforce these rules when you tag data yourself. Delta Application logic provided by
TDI may ignore incorrect operation codes, or even throw an error. More on this in section 4
Delta Application starting on page 20.

23 Indexes in Java, as with many programming languages, start with zero (0). So if an Attribute has four values,
these are accessed as indexes 0, 1, 2 and 3.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 28

5.3 Debugging Delta Operation Codes
If you’ve ever used the task.dumpEntry() method, then you’ve probably seen operation
codes without knowing it:

13:32:34 *** Begin Entry Dump
13:32:34 Operation: generic
13:32:34 [Attributes]
13:32:34 members (replace): 'aglessan150' 'alanbrau106'
13:32:34 group (replace): 'Coffee Drinkers'
13:32:34 *** End Entry Dump

The above dump shows that Entry itself tagged as generic24, indicating that it did not originate
from Delta Detection. Since the Entry bucket is tagged with the generic delta operation code,
it is not surprising that the Attributes shown – members and group – have default delta tags
(which for Attributes is replace).

If we dump an Entry received from Delta Detection (in this example, read from an LDIF
Parser) then you can see that the format has not changed; just the codes shown:

13:44:21 *** Begin Entry Dump
13:44:21 Operation: modify
13:44:21 [Attributes]
13:44:21 members: 'abnevanm408'
13:44:21 group (replace): 'Coffee Drinkers'
13:44:21 *** End Entry Dump

The Entry shown here carries the modify tag. But while the group Attribute still has the
default replace code, the tag for members is not displayed by dumpEntry(). That is because
the members Attribute has the modify tag, which in turn means that the values it contains are
also tagged. However, the dumpEntry() function is designed to display the contents of an
Entry object in condensed format, not its full delta information.

In order to display all operation codes you can either query these values using the methods
listed in the previous section, or you can get the Entry object to represent itself as a Java
String that includes all delta info. This is done with the Entry’s toDeltaString()
method. As an example, the following snippet will log the delta representation for the Work
Entry:

 task.logmsg(work.toDeltaString());

24 Functions like task.dumpEntry() use the more legible String variants of the delta operation codes. For
example, OP_MOD is displayed as “modify”.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 29

The resulting output looks like this (after the log timestamp is removed):
modify {
 members {
 type: modify
 count: 3
 values [
 add: abnevanm408
 unchanged: abdaburr393
 unchanged: alanbrau106
]
 }
 group {
 type: unchanged
 count: 1
 values [
 unchanged: Coffee Drinkers
]
 }
}

The topmost modify in the above listing is the operation code of the Entry itself. Attributes
contained in this Entry are listed inside a set of curly braces {}.

For each of the Attributes shown here (members and group), further details are displayed
inside additional curly braces. Looking at the members Attribute, the first item listed shows
the operation code of the Attribute (displayed as “type: modify” above). Next comes the
number of values (count: 3) followed by the values themselves, each with its own
operation code.

A shorthand description of the above listing would be “add the value ‘abnevanm408’ to the
‘members’ Attribute of this Entry”.

5.4 Manual Delta Code Tagging
Although all Change Detection components and features return information on how data is
changed, tagging of Attributes and Values is not done by all of them. So even if there is not a
suitable Changelog Connector for your needs, you can leverage the Delta Engine for this
purpose.

However, if the target system provides information about change events (for example, as
Attribute values, or via API calls) then you can easily set the operation codes yourself.

As an example, consider an AssemblyLine reading from a CSV file. Each line in the file is the
record of some change, and one of the fields is called “changeType” and can have a value of
“delete”, “add” or “modify”. Armed with this Attribute value, we can use the following script
to tag the Work Entry accordingly.25:

work.setOperation(work.getString(“changeType”));

25 Although you can put this code in a Connector Hook (like After GetNext), a better choice is to drop this
snippet in a Script Component that appears in the AL just after the Iterator. By naming this Script Component
descriptively, for example “PerformDeltaTagging”, your AssemblyLine becomes easier to read and maintain.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 30

The manually tagged Work Entry is now ready to be passed to Delta Application.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 31

6 Conclusion
So there you have it, or at least a piece of it. As is the nature of development tools, there are
multiple approaches to building synchronization solutions. In addition to the topics covered
here, the adventurous user can extend TDI’s integration reach by creating new components (in
Java or JavaScript) and leveraging vendor-specific functionality available in your systems. Or
making calls to these APIs directly from Script code in your AssemblyLines.

Whether you use the Delta Handling features in TDI 6.1 for Delta Detection/Tagging, Delta
Application or both, they provide building blocks for laying the foundation of your solution
faster.

TDI How To Synchronizing Data Tivoli Directory Integrator

24 May 2007 32

7 References
1. Getting Started. Part of the official TDI documentation. See

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_6.1.
1/gettingstarted.htm

