
Getting Started making DLAs for TADDM/CCMDB

November 2008

Getting Started makingDLAs
to create IDML Discovery Books
for
TADDM/CCMDB
with
Tivoli Directory Integrator
Written using TDI 6.1.1 FP4
Document version 1.2

Eddie Hartman, TDI Storyteller
Eduardo Patrocinio, Tivoli SWAT
Jan Erik Hoel, Senior IT Specialist, ISM

© Copyright International Business Machines Corporation 2008 All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Getting Started making DLAs for
TADDM/CCMDB

Introduction

2

Getting Started making DLAs for
TADDM/CCMDB

Introduction

3

REVISION HISTORY

Date Version Revised By Comments

25 Sept 2008 1.0 EH Completed initial version

31. Oct 2008 1.1 JEH Added new section + corrections

20. Nov 2008 1.2 EH More corrections & published

Getting Started making DLAs for
TADDM/CCMDB

Introduction

4

CONTENTS

Revision History.. 3

1. Introduction.. 5

1.1. Getting Started ... 5

1.2. TDI Interface Setup .. 7

2. Creating a DLA to load data into TADDM.. 8

2.1. Preparation... 8

2.2. Creating the DLA AssemblyLine (aka DLA AL) .. 9

2.3. Creating an IdML Discovery Book.. 12

2.4. Adding CIs.. 16

2.5. Validating the IdML Book ... 22

2.6. Adding CI Relationships ... 23

2.7. Transferring the IdML file to the TADDM Server .. 27

2.8. Loading the IdML file into TADDM.. 30

3. Running the DLA from the command line.. 32

4. Conclusion... 34

Getting Started making DLAs for
TADDM/CCMDB

Introduction

5

1. Introduction

TADDM is a powerful tool for discovering and persisting information about hardware
and software assets, along with their infrastructural relationships and dependencies.
However, sometimes TADDM’s discovery features are not enough and this data must
be extracted from existing (often in-house) solutions.

In these cases, TADDM provides a few choices for loading data:

· the Graphical Interface for entering data manually;

· the Command Line tooling for loading specially formatted files that conform to
the IdML spec;

· and a Java API for writing Dynamic Library Adapters (DLAs) that create the
necessary IdML files.

So apart from typing in your CIs by hand, your choices are to either manually write
complex IdML files, or code a DLA using Java.

Or you can rapidly assemble an IdML-conformant DLA using Tivoli Directory
Integrator.

IBM Tivoli Directory Integrator (TDI) is a flexible integration toolkit that is bundled with
a growing number of IBM products, including TADDM. It consists of a run-time server
and a graphical development environment for building, testing and maintaining the
rules that the server executes. TDI runs on all IBM platforms (plus a few more) and
has an interactive graphical interface that helps you quickly get traction with your
integration challenge.

1.1. Getting Started

You should already an understanding of how information is organized in TADDM,
e.g. CIs and relationships. In addition, you will need to download and install Tivoli
Directory Integrator. Note that TDI is very lightfooted so the installation will only take
a few minutes and you should simply accept the default installation settings. If you
decide not to, then make a note of where the TDI program files are kept, as well as
which path you chose for your Solution Directory. The Solution Directory is where
your project files are kept, and this area should be included in your backup routine.

Be sure when you install TDI that you upgrade it to the latest patch level. Links and
information are found here:

http://www-
1.ibm.com/support/docview.wss?rs=697&context=SSCQGF&dc=DA400&uid=swg27010509
&loc=en_US&cs=UTF-8&lang=en&rss=ct697tivoli

Getting Started making DLAs for
TADDM/CCMDB

Introduction

6

Also, there is no need to worry about the TDI installer adversely affecting your
machine; it simply lays down files into a self-contained directory structure. In fact, you
can actually zip up a TDI installation and unzip elsewhere to move it.

Once TDI is installed, spend at least an hour working through the Getting Started
guide:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.
doc_6.1.1/gettingstarted.htm1

After completing the Getting Started exercises, spend another couple of hours on the
first four video tutorials found here:

http://www.tdi-users.org/twiki/bin/view/Integrator/LearningTDI

This should give you enough background to follow the remainder of this guide.

Specifically, you will be familiar with TDI concepts like AssemblyLines (abbreviated
as ”AL” here and in other TDI literature), Attribute Maps and AL components like
Connectors, Functions, Parsers and Loops.

You will also need a copy of the IdML and TADDM components for TDI. Links to the
necessary files are included in the following chapters.

1 Each TDI manual is available as a PDF download to faciliate offline usage.

Getting Started making DLAs for
TADDM/CCMDB

Introduction

7

1.2. TDI Interface Setup

Also, if you want your TDI screens to look just like those in this document (plus avoid
some less attractive side-effects of the default Java Swing settings) then do the
following in the TDI Config Editor:

1. Select File ► Edit Preferences
a. in the Appearance ► General tab:

i. Change View Type to Tabbed from the drop-down;
ii. Check the top two checkboxes.

b. in the Appearance ► Look & Feel tab:
i. Change Look & Feel2 to Metal from the drop-down. This is a

cleaner and easier-to-navigate option.
c. in the Misc Settings tab:

i. Set Execute Task Lines3 to 40000. This is a Java Swing buffer
that should be bigger than just 400.

2 The Metal Look & Feel is a better implementation – at least under Windows.

3 This is a Java Swing buffer size that should be increased.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

8

2. Creating a DLA to load data into TADDM

You mission, should you decide to accept it, is to load the following data with
machine names and their associated operating systems into TADDM:

machine,op_sys
troosevelt.my.com,Windows XP
taft.my.com,Red Hat Linux
wilson.my.com,Red Hat Linux
harding.my.com,AIX
coolidge.my.com,Windows XP
hoover.my.com,AIX
froosevelt.my.com,AIX
truman.my.com,AIX
eisenhower.my.com,AIX
kennedy.my.com,AIX
johnson.my.com,Windows XP
nixon.my.com,Red Hat Linux
ford.my.com,Windows XP
carter.my.com,AIX
reagan.my.com,Red Hat Linux
bush.my.com,AIX
clinton.my.com,AIX

You will do this by creating a TDI AssemblyLine (AL) to transform the above input
information into an IdML file.

IdML is an XML schema used for exchanging information about Configuration Items
and their relationships. DLAs – like the AL you are about the make – create XML
documents called 'Discovery Books' that comply with this schema and that can be
loaded into Tivoli products like TADDM4.

2.1. Preparation

To prepare for this exercise, you will need to do a couple of things:

First you must set up the input data file by making a new folder in your TDI Solution
Directory named 'TADDM'. Then create a text file in this new directory called
'MachineAndOS.csv' and copy-paste in the example data shown above.

The next step is to to install the IdML components which you download from the
Tivoli OPAL site. Here is a direct link to the asset:

4 Another product that can load IdML is Tivoli Business Service Manager

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

9

http://www-
01.ibm.com/software/brandcatalog/PA_1_30000H0028BPF02BJ9MORU0000/DownloadRedi
rector?u=null&i=1TW10CC16

Simply follow the instructions listed in the release notes file to perform the
installation5.

2.2. Creating the DLA AssemblyLine (aka DLA AL)

Once the components are in place, start the TDI Config Editor and create a new TDI
project, also known as a Config, by clicking on the Create new Config button.

Call this project 'myDLA.xml'. Note that you must write the .xml extension yourself.
Press OK to confirm.

5 Note that instead of copying .jar files into <TDI-install-folder>/jar sub-folders as instructed
in the release notes, it is recommended that you create your own folder where you will keep these
separate from the standard installed TDI .jar files. NOTE: This technique does not apply to those files
that need to be copied under the <TDI-install-folder>/jvm area.

To do this, make a directory called “CustomJars” under your Solution Directory and then add a sub-
folder called 'TADDM_IDML', placing the IdML .jar files here (again, except for those that need to go
under the jvm/jre/lib/ext area).

Now edit the solution.properties text file found in your Solution Directory and remove the
number sign (#) that comments out the com.ibm.di.loader.userjars property. This property line
should appear near the beginning of the file. Set this property to point to your CustomJars folder:

com.ibm.di.loader.userjars=CustomJars

Save the file and restart the Config Editor. TDI will now be able to find the IdML library files.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

10

You should now see the standard layout of a TDI project, as displayed in the Config
Browser tree-view in the left part of the screen. There is a Config node for controlling
project-wide settings followed by one named AssemblyLines. This is where your
DLA ALs will appear as you implement them.

Below AssemblyLines are five more folders where the project library resources are
kept; with one folder for each type of TDI component: Connectors, Functions,
Parsers, AttributeMaps and Scripts.

There are four different TDI IdML components: two Connectors and two Function
components (FCs):

IDMLConfigurationItem Connector used to create Configuration Items (CIs).

IDMLReln Connector used to add relationships between CIs.

OpenIDML FC used to open a new Discovery Book (IdML doc).

CloseIDML FC for closing an open Discovery Book.

As you can see from the above list, the IdML FCs are for opening (creating) and
closing IdML Discovery Books, while the Connectors are what you use to write
information to an open Book. Your AL will be using all four of these components.

Right-click on the AssemblyLines folder and select New AssemblyLine...

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

11

Name your new AssemblyLine "MyFirstDLA" and press OK.

You will now see an empty AssemblyLine details panel.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

12

The Feeds section is typically the 'data pump' of an AssemblyLine, containing an
Iterator mode Connector that reads in one entry at a time, driving data to the Flow
section components for processing. In other words, the Feeds section serves as an
implicit for-each loop that cycles the Flow section component for each entry read.
You will have seen this in the Getting Started and video tutorial exercises.

However, before your AL can start reading in data and writing to your Discovery
Book, it must first open the Book using the OpenIDML FC. Since there is no way to
get the OpenIDML FC to do this before the looping behavior of the Feeds section
kicks in, you will not be able to use this built-in Feeds/Flow feature. Instead, you will
implement similar for-each logic inside the Flow section using a TDI Loop
component.

2.3. Creating an IdML Discovery Book

As noted above, the first thing your AL must do is create and open your Discovery
book. As a result, you will need to add the OpenIDML FC. Do this by right-clicking on
the Flow section folder and then selecting Add Function Component...

Choose the 'idml.OpenIDML' Function component and call it 'OpenBook'.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

13

Press OK to confirm this and you will be presented with the configuration panel for
the OpenIDML Function component.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

14

NOTE: If for some reason you do not get the above Config panel it means that you
did not successfully install the required .jar files, or that you did not restart the
TDI Config Editor after performing the installation. Make sure you follow the
ReleaseNotes.txt instructions precisely, and if the problem persists then
contact the renown TDI support team at 1-800-IBM-SERV.

Here is an overview of the OpenIDML FC parameters, along with the values you will
use6:

Application Code This is the Application code of the Management Software
System (MSS), consisting of an acronym for the source
application plus its version number (e.g. TDI6.1.1).

For this example use the value 'App1.0'.
Refresh Select this checkbox if the IdML you are creating represents

new data or a full refresh, in which case TADDM will create
new entries in its data store. If you leave this checkbox
unchecked then you are telling TADDM to modify existing CIs
and relationships using this IdML7.

You can leave this open for the exercise.
Validate Selecting this checkbox will invoke the IdML validation feature

of this component.

Leave this unchecked for the time being.
Directory Name Here you enter the full path to the directory where you want

your IdML Book file created.

Enter a valid folder on your machine. For example, write your
Book to 'C:\temp' if this directory exists.

Book Name The name you give this Book, and which all other components
associated with the same IdML must share.

Enter the value 'MyBook' here.
Manufacturer Name This parameter value is used in the creation of the

Management Software System name and should reflect the
source of the integration.

Use 'IBM' for this example exercise.
Product Name This parameter value is used in the creation of the

Management Software System name and should reflect the
source of the integration.

6 One of these parameters is shared between all IDML components: Book Name. Each pair of
OpenIDML and CloseIDML FCs must refer to the same Book, just as the Connectors used to write to
a particular Book must be configured with that Book’s name.

7 Note that if TADDM cannot find assets that match the incoming IdML, it will create new entries
anyway, as long as adequate information is included in the IdML.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

15

Use 'MyProduct' for this example exercise.
Hostname This parameter value is used in the creation of the

Management Software System name and should reflect the
source of the integration.

Enter 'host.ibm.com' for this example exercise.
Detailed Log All TDI components have this flag. Enabling it will result in

verbose log output, facilitating troubleshooting and providing
vital information for TDI support personnel.

Leave this checkbox open.

Before adding any more logic to this solution, test that your component is working by
pressing the Run AL button located at the top right-hand corner of the AssemblyLine
details panel.

This causes the TDI Config Editor to launch a new Server, connect through the API
and pipe across your Config. It furthermore instructs the TDI Server to run your
AssemblyLine and then captures log output for display onscreen. Once your
AssemblyLine has completed, the Server shuts down.

Your AL should produce output similar to the following:

(continued on next page)

[4:35:26 AM EDT] CTGDIC126I Waiting for incoming connection to ServerSocket[addr=IBM-
2AEEE2FCCF4/192.168.89.1,port=0,localport=2932].
Command Line Parameters:
 [javaw.exe, -classpath, C:\Program Files\IBM\TDI\V6.1.1_GA\IDILoader.jar, -
Dlog4j.configuration=file:///C:\Program Files\IBM\TDI\V6.1.1_GA/etc/executetask.properties, -
Dos.name=Windows XP, -Djava.library.path=C:\Program Files\IBM\TDI\V6.1.1_GA\jvm\jre\bin;.;C:\Program
Files\IBM\TDI\V6.1.1_GA\jvm\jre\bin;C:\Program Files\IBM\TDI\V6.1.1_GA\libs;C:\Python24;C:\Program
Files\Support Tools\;C:\Program
Files\ThinkPad\Utilities;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program
Files\IBM\Infoprint Select;C:\Notes;C:\Program Files\XLView;C:\Utilities;C:\Program Files\IBM\Personal
Communications\;C:\Program Files\IBM\Trace Facility\;C:\WINDOWS\Downloaded Program Files;C:\Program
Files\ObjREXX;C:\Program Files\ObjREXX\OODIALOG; C:\Program Files\Stardock\Object Desktop\Object
Edit;C:\Program Files\ATI Technologies\ATI Control Panel;C:\Program
Files\ThinkPad\ConnectUtilities;C:\Program Files\Common Files\Adobe\AGL;C:\Program Files\Common
Files\Lenovo;C:\Program
Files\WinSCP3\;C:\PROGRA~1\IBM\SQLLIB\BIN;C:\PROGRA~1\IBM\SQLLIB\FUNCTION;C:\PROGRA~1\IBM\SQLLIB\SAMPLES\RE
PL;C:\Program Files\cvsnt;C:\Program Files\Rational\common;C:\IDWBWIN\bin;C:\Program
Files\QuickTime\QTSystem\;C:\Program Files\IBM\CMVCDC50;C:\Program Files\GnuWin32\bin;C:\Program
Files\IBM\CMVCDC50;C:\Program Files\Rational\Common, -jar, C:\Program
Files\IBM\TDI\V6.1.1_GA\IDILoader.jar, com.ibm.di.server.RS, -BAssemblyLines/MyFirstDLA, -SC:\Documents and
Settings\no010196\My Documents\TDI_pre7.0\myDLA.xml, -Ycom.ibm.di.config.xml.MetamergeConfigXML, -D, -R, -
Q2932, -b192.168.89.1]

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

16

Did you notice that even though you have not added the CloseIDML FC yet, the Book
is closed when the AL completes. In fact, as long as the AssemblyLine is not
automatically transferring the file to the TADDM server (as yours soon will), you do
not need to explicitly close the Book with the CloseIDML FC.

NOTE: Running the AssemblyLine from the GUI is the easy way to perform testing
when creating a solution. In addition, the AssemblyLine can be run from the
command line – which is normally the way to do it in an production
environment. See chapter 3 for details on how to do this..

2.4. Adding CIs

It’s now time to actually write some data to your Book. To do this you will first need to
implement some AL logic to loop through the input file.

04:35:31 CTGDIS232I Server is running in standard mode.
04:35:32 CTGDIS236I The stash file has been successfully read.
04:35:32 CTGDIS237I The key password is not present in the stash file. The keystore password will be used.
04:35:32 CTGDIS238I Server security has been successfully initialized.
04:35:33 CTGDKD445I Custom method invocation is set to false.
04:35:33 CTGDKD460I Generated configuration id 'C__Documents and Settings_no010196_My
Documents_TDI_pre7.0_myDLA.xml' for a configuration instance loaded from file 'C:\Documents and
Settings\no010196\My Documents\TDI_pre7.0\myDLA.xml'.
04:35:33 CTGDIS229I Register server: C:\Documents and Settings\no010196\My Documents\TDI_pre7.0\myDLA.xml.
04:35:33 Version : 6.1.1 - 2008-05-15
04:35:33 OS Name : Windows XP
04:35:33 Java Runtime : IBM Corporation, 2.3
04:35:33 Java Library : C:\Program Files\IBM\TDI\V6.1.1_GA\jvm\jre\bin
04:35:33 Java Extensions : C:\Program Files\IBM\TDI\V6.1.1_GA\jvm\jre\lib\ext
04:35:33 Working directory : C:\Documents and Settings\no010196\My Documents\TDI_pre7.0
04:35:33 Configuration File: <stdin>
04:35:33 CTGDIS785I ---
04:35:33 CTGDIS040I Loading configuration from stdin.
04:35:33 CTGDIS029I Starting AssemblyLine AssemblyLines/MyFirstDLA for debug.
CTGDIS589I Connect to 192.168.89.1: 2932
[4:35:33 AM EDT] CTGDIC127I Connection from Socket[addr=/192.168.89.1,port=2937,localport=2932].
[4:35:33 AM EDT] Remote Task Name: Thread-4
04:35:33 CTGDIS034I Wait for completion of AssemblyLine: AssemblyLines/MyFirstDLA.
04:35:33 CTGDIS255I AssemblyLine AssemblyLines/MyFirstDLA is started.
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option appCode = App1.0
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option dirName = C:\temp
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option bookName = MyBook
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option manufacturerName = IBM
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option productName = MyProduct
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option hostName = host.ibm.com
04:35:33 [OpenBook] Initalizing the Open IDML Function Component option validate = false
04:35:34 [OpenBook] Initializing Open IDML Function Component parameters done.
04:35:34 CTGDIS087I Iterating.
04:35:34 CTGDIS086I No iterator in AssemblyLine, will run single pass only.
04:35:34 CTGDIS092I Using runtime provided entry as working entry (first pass only).
04:35:34 CTGDIS088I Finished iterating.
04:35:34 [OpenBook] Closed IdML book App1.0.host.ibm.com.2008-09-26T08.35.34.031Z.xml
04:35:34 CTGDIS100I Printing the Connector statistics.
04:35:34 [OpenBook] CallReply:1
04:35:34 CTGDIS104I Total: CallReply:1.
04:35:34 CTGDIS101I Finished printing the Connector statistics.
04:35:34 CTGDIS080I Terminated successfully (0 errors).
04:35:34 CTGDIS079I AssemblyLine AssemblyLines/MyFirstDLA terminated successfully.
[4:35:34 AM EDT] AssemblyLines/MyFirstDLA
04:35:34 CTGDIS036I Exit after auto-run requested.
04:35:34 CTGDIS174I Config Instance C:\Documents and Settings\no010196\My Documents\TDI_pre7.0\myDLA.xml
exited with status 2.
04:35:34 CTGDIS228I Unregister server: C:\Documents and Settings\no010196\My
Documents\TDI_pre7.0\myDLA.xml.
04:35:34 CTGDIS627I TDI Shutdown.

Process exit code = 0

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

17

Start by right-clicking on the Flow folder again. This time select Add loop... and call it
'FOR EACH machine read'. Once you press OK, the Loop details panel appears on
screen.

Here you can see that there are three types of Loop, as indicated by the radio
buttons across the top of the details panel. Keep the default setting of Connector
Loop so that you can attach a Connector to read in the example data. Do this now by
pressing the Inherit from button.

Select the FileSystem Connector from the resulting selection drop-down.

Once you have chosen it and pressed OK, the FileSystem Connector parameters are
shown in the Config tab of the Loop panel.

Enter the File Path to the exercise data you set up earlier in this section. Note that
this can be a relative path based on your Solution Directory, as shown in this
screenshot.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

18

The FileSystem Connector needs a Parser to interpret the structure of the incoming
byte stream. Configure this by clicking on the Parser tab and then on the Inherit
from button at the bottom right-hand corner of this tab. Choose the 'CSV Parser'.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

19

By default, the delimiter for the Character Separated Value (CSV) Parser is a semi-
colon. You must change the Field Separater to a comma so it matches the format of
your exercise data8.

Now you can select the Input Map tab and press the Quick discovery button to
read and parse the file, presenting you with the list of available Attributes.

Drag these Attributes from the Connector Schema into the Input Map rules list. As
you know, the Input Map rules instruct the Loop Connector to bring these Attributes
into the AssemblyLine for processing – a fact that is also visible onscreen since these
Attributes now appear in the AL Work Entry list.

8 Since your data file already contains a first line specifying field names, you do not need to enter
these yourself in the Field Names parameter.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

20

The Connector Loop will now cycle once for each line read and parsed from the CSV
file. It’s time to hang a Connector under the Loop to create a new CI for each input
line. Do this by right-clicking on the Loop and then selecting Add Connector
component... Choose the 'idml.IDMLConfigurationItem' Connector from the list and
call this new Connector 'AddMachineCI'9.

The IDMLConfigurationItem Connector has only two required parameters:

9 The IdML Connectors only support AddOnly mode so you can leave this drop-down as it is.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

21

· The Class Type where you specify the type of CI you are creating. Enter the
value 'cdm:sys.ComputerSystem' here for this exercise.

· The Book Name which must have the same value that you specified for the
OpenIDML Function component: 'MyBook'.

Now you need to set up the Output Map for this Connector in order to transform the
CSV exercise data into the CI fields id, cdm:Signature and cdm:Fqdn.

Starting with id, select the Output Map tab and drag in the 'machine' Attribute from
the Work Entry list into the Output Map. Double-click on it in order to rename the
Attribute to 'id' so it conforms to the IdML schema.

As you can see from the above screenshot, even though the Attribute is written to the
Discovery Book with the name 'id', it is still getting its value from the Work Entry
Attribute called 'machine'.

Drag 'machine' again into the Output Map and this time rename it to 'cdm:Signature'.
Now drag it over once more and this time call it 'cdm:Fqdn'.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

22

Even though this is an example scenario, it is not uncommon that the same source
Attribute is mapped to multiple output Attributes.

2.5. Validating the IdML Book

It’s time to test your work again. But before you do, select the OpenBook FC
(OpenIDML) and enable the Validate checkbox. Now that there is data in the
Discovery Book you will want it validated. Test your AL again by pressing the Run
button.

Your AssemblyLine will produce output similar to what you saw in the last test, with
the addition of a validation report:

You should also be able to find your newly created Discovery Book and open it in a
browser window to examine the contents. There should be one
<cdm:sys.ComputerSystem> node for each machine read from the input file.

IBM Discovery Library Certification Tool
Version 2.4.4

===
File: C:\temp\App1.0.host.ibm.com.2008-09-24T22.55.54.140Z.xml
===
.

Certification tool found:
 18 Managed elements
 0 Relationships

[PASS] - TEST 00 (XML Parse)
[PASS] - TEST 01 (All MEs have a valid ID)
[PASS] - TEST 02 (superior reference IDs in book)
[PASS] - TEST 03 (Attributes are valid)
[PASS] - TEST 04 (All managed elements have a valid naming rule)
[PASS] - TEST 05 (All managed elements are valid)
[PASS] - TEST 06 (All relationships are valid)

Book passed all certification tests
Elapsed time: 4.2 seconds

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

23

2.6. Adding CI Relationships

In addition to host names, the input data also contains information about each
machine’s operation system. This data must also be captured in your Discovery
Book, as well as the relationship between each machine and its installed operating
system. Since a relationship is added after the related CIs are in place, you must first
write a CI for each OS.

Add another Connector by right-clicking on the Loop and selecting Add Connector
component... Choose the 'idml.IDMLConfigurationItem' Connector from the list and
call this new Connector 'AddOS'.

Operating systems are represented by a separate CI class in the Common Data
Model called cdm:sys.OperatingSystem, so set the Class Type parameter to
'cdm:sys.OperatingSystem'. The Book Name must of course be 'MyBook'.

The cdm:sys.OperatingSystem class also needs an id value. Use the same Work
Entry Attribute that you did for the ComputerSystem by bringing up the Output Map
for your 'AddOS' Connector, dragging in the 'machine' Attribute and renaming it to 'id'.

Since every CI must have a unique id, you will need to modify the mapping rule
slightly so that the id of the OperatingSystem will be different from that of the
associated ComputerSystem. The simplest way to do this is by selecting the 'id'
Output Attribute and then changing the Mapping Type from Simple to Expression.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

24

Expression maps allow you to enter a literal text value with optional substitution
tokens. As soon as you select Expression mapping, TDI presents you with an
Expression containing a token that is equivalent to the original Simple map:
{work.machine}

Now you can ensure a unique OperatingSystem CI id value by simply appending the
text '_os' after the rightmost curly brace of the substitution token10:
{work.machine}_os

Now drag the 'op_sys' Attribute from the Work Entry list into the Output Map and
rename it to 'cdm:OSName'. Press the eyeball button above the Output Map and
switch to List View mode. This gives you a quick overview of your mapping
assignments. The AddOS Connector is now complete.

10 This could also be done using the JavaScript Mapping Type option and then entering the following
snippet in the assignment editor:

 ret.value = work.getString(”machine”) + "_os";

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

25

You can run your AssemblyLine now and verify your work if you like, or you can
proceed with adding the installedOn relationship first. That’s the beauty of TDI: you
can continually test your solution as you refine the logic of your AL.

Also, remember to periodically save your Config with either the Ctrl-S keyboard
shortcut, by selecting the File > Save menu option, or by pressing the Save button in
the main button bar.

Now that both CIs have been added, your AL can now write the relationship between
them. Do this by right-clicking on the Loop again and selecting Add Connector
component... This time you choose the idml.IDMLReln Connector. Call it
'AddRelationship' and press OK to confirm.

The IDMLReln Connector is similar to the IDMLConfigurationItem Connector you’ve
been using already, with the exception that the ClassType parameter has been
replaced with Relationship Class Type.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

26

The Relationship Class Type value you should use here is 'cdm:installedOn'. And,
once again, set Book Name to 'MyBook'.

Your last step here will be to set up the fields for this relationship: source and target.
The source of the relationship will be the OS and the target is the machine it is
installed on.

Select the Output Map of your 'AddRelationship' Connector and then drag in
'machine' from the Work Entry list. Double-click on it and call it 'target'. Now the value
assigned to the 'target' Attribute will be the same as the 'id' of the ComputerSystem.

To specify the source for this relationship, drag in 'machine' once more, rename it to
'source'. Now apply the same change to the mapping assignment as you did for the
OperatingSystem id; in other words, this Expression map: {work.machine}_os

If you use the eyeball button to switch to List View then your assignments should look
like this:

Now run your AssemblyLine again. If all goes well then your AL will create a new
IdML Book complete with CIs and relationships, and then validate it. Once this is
achieved, you are ready to transfer your Discovery Book to the TADDM server.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

27

2.7. Transferring the IdML file to the TADDM Server

To securely transfer an IdML Book to the TADDM server, another TDI component is
required. You can download the package from OPAL at the following link:

http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10DI0C

Unpack the asset, place the FileTransferFC.jar in the same directory as the jar files
from the previously added FC’s and then restart the TDI Configuration Editor. Be
sure to consult the release notes for any last minute changes or notices.

Once these preparations are complete, you can continue with your AssemblyLine.

The first thing that you will need to do is explicitly close the IdML Book. To do this,
add a new Function component to the Flow section, making sure it appears after your
Loop and not under it. Choose the CloseIDML FC and call it 'CloseBook'. This
component has only a single parameter, Book Name, which you set to 'MyBook'.

The CloseIDML FC will close the Book and perform validation if this option is enabled
in the OpenIDML FC. It will furthermore return the filepath to the newly created XML
document. You will need this in the last step when you pass the file to TADDM for
import.

To retrieve the Book filepath, select the Input Map of your 'CloseBook' FC and press
the Add new attribute button.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

28

Name this Attribute 'idml.bookName' and press OK to confirm. Then double-click on
this Attribute and rename it to 'FileName' so that it can easily be referenced in a TDI
Expression11.

Because 'FileName' is found in an Input Map, an Attribute called 'FileName' now
appears in the Work Entry list. You are ready to add the FC that will transfer this file
to TADDM.

Right-click on the Flow section folder and select Add Function Component.... Choose
the 'ibmdi.FileTransferFC' and call it 'SendBook2TADDM'. In the Config tab, set the
parameters to suit your TADDM environment.

11 If you click on this Attribute you will see that it is still mapping its value from 'idml.bookName', which
is what the CloseIDML FC returns. You can rename the resulting Work Entry Attribute as desired, and
in this case the goal is to make the Attribute name usable in a TDI Expression; the extra dot (.) in the
original name would not work.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

29

Note that the Source file (local) parameter is left blank. This is because the IdML file
name is generated at run-time by your 'OpenBook' FC. Fortunately, the Source file
parameter value can be passed to the FC by mapping it out in a specially named
Attribute: 'source.file'.

Go to the Output Map of the 'SendBook2TADDM' FC and drag in the 'FileName'
attribute from the Work Entry list. Now rename it to 'source.file', the name that the FC
is expecting.

Since the 'Filename' Attribute contains only the file name instead of its full path, you
will need to change the Map Type to Expression and include the path you set for the
OpenBook FC12: C:/temp/{work.FileName}

12 TDI lets you use forward or backwards slashes as you please, regardless of the platform your
system is running on.

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

30

Save your work.

If the FC has been correctly configured then when you now click Run to test the
AssemblyLine, it will create the IdML Book, validate it and then transfer it to the
TADDM server.

2.8. Loading the IdML file into TADDM

The last step to be added to the AssemblyLine is the function to import the IdML into
TADDM. This is done by execution of a command on the TADDM server, and can
automated by adding the Remote Command Line Function Component to your
AssemblyLine.

Right click on the Flow section folder and select Add Function Component:

Getting Started making DLAs for
TADDM/CCMDB

Creating a DLA to load data into TADDM

31

Select the ibmdi.RemoteCmdLineFC Function Component, enter UpdateTADDM as
name and press OK.

The following parameters must be configured:

Target Machine
Hostname

The server running TADDM.

Remote User The id of a user with the necessary access rights to run the
loadidml command on the TADDM server.

Password Password for the user id specified above.
Connection
Protocol

This selection is based on your environment and platform that
TADDM is running on; for example WIN for a Windows
TADDM server.

Command The full path to the loadidml command, including the –f
option and a path to the directory where the IdML file is
located (as set in the previous section on transferring the IdML
Book). Using the example of TADDM running on a Windows
server again:

 c:\ibm\cmdb\dist\bin\loadidml.bat -f c:\ibm\cmdb\dla

Note: Since the loadidml command will process all files
found in the directory where the command is run, a file name
is not needed as part of the command syntax.

Stdin destination
directory (remote)

The directory where the loadidml command will be run, e.g.:

 c:\ibm\cmdb\dla

Now when you click Run to test the full Assembly Line then the log output should
look similar to this:

Getting Started making DLAs for
TADDM/CCMDB

Running the DLA from the command line

32

In addition, you will be able to see the new entries in the TADDM GUI:

If you have the TADDM GUI open when you run your Assembly Line, you will see the
following status message at the bottom of the screen. Click the message to update
the view to see the added components.

NOTE: Although the servers you just added will include the OS name as specified in
the csv file, they will not be categorized correctly in TADDM. To get correct
placement in the TADDM database, additional fields would have to be available in
the csv file, or joined into the AL from other sources.

3. Running the DLA from the command line

As noted earlier, running the AssemblyLine from the GUI is the best way to test and
debug. However, in a production setup you would normally run the AssemblyLine
from the command line.

As an example of doing this under Windows, open a DOS window and navigate to
your TDI folder (e.g. C:\Program Files\IBM\TDI\V6.1.1). To run your AssemblyLine,
enter the following command:

ibmdisrv –c myDLA.xml –r MyFirstDLA

Getting Started making DLAs for
TADDM/CCMDB

Running the DLA from the command line

33

Note that if you run the ibmdisrv command with no arguments then you get a
complete usage message, outlining the various options available to you.

C:\Program Files\IBM\TDI\V6.1.1>ibmdisrv
Usage: ibmdisrv [OPTION]...
Allowable options are:
-c <file ...> Configuration files.
-d Run in daemon mode
-e Start the Server in secure mode.
-f <extProp1=file1,extProp2=file2 ...> External property files.
-i Ignore global properties file and read from solution properties file.
-l <file ...> Redirect Console output to specified log file.
-n <encoding> Encoding to be used when writing configuration files.
-p Dump java properties on startup.
-q <mode> mode=1 Run in record mode, mode=2 Run in playback mode
-r <al ...> List of AssemblyLine names to start. To start AssemblyLine a and b,
use the command -r a b.
-s <dir> Specifies the working directory where the solution is located. Must be
first option.
-t <eh ...> List of EventHandler names to start. To start EventHandler a and b,
use the command -t a b.
-v Show version information and exit. This is logged only in the logfile.
-w Wait for each AssemblyLine or EventHandler to complete before starting the ne
xt.
-D Disable startup of auto-started EventHandlers.
-P <password> Password if configuration file is encrypted.
-R Disable Remote API, ignoring the setting in global.properties.
-T Enable Performance logging
-W Never terminate the server
-Z Zero out checkpoint information and start checkpointed AssemblyLine from begg
inning
-? This message
-0 to -9 for user-defined parameters

Getting Started making DLAs for
TADDM/CCMDB

Conclusion

34

4. Conclusion

Congratulations! You have just created your first TDI DLA. Once in TADDM,
information about CIs and their relationships can be moved to CCMDB to enable ISM
services like Tivoli Service Request Manager (TSRM). There are also additional TDI
components available on OPAL for searching and extracting TADDM data in order to
drive it to, or synchronize it with targets like reporting systems, databases and even
text files; or simply to augment data in other AL flows.

And this is only the beginning. As mentioned in the introduction, TDI is part of a
growing number of IBM products and offerings, and you will find the skills you just
gained invaluable across a wide range of development and deployment scenarios.

There are a number of resources available to help you build your TDI expertise, and
a good place to start is with this video tutorial on the AssemblyLine Debugger13:

http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10DI06

This uniquely powerful feature lets you interactively step through the execution of
your AssemblyLines, visually controlling your transformation and flow-control logic,
and both viewing and modifying data in-flight – even if the AL is running on a remote
platform.

You will also want to understand how to make your ALs more robust by through Error
Handling:

http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10DI0B

Hopefully, this will whet your appetite for more and ensure that you keep TDI’ing :)

13 All video tutorials, including exercise data files, presentations and sample Configs can be found in
the TDI community website: www.tdi-users.org.

