
Introduction

This document describes how to use the JavaScript code deltaEngine.js to determine
changes in the data source.

This document extends the tutorial Creating IDML Books using Tivoli Directory Integrator
(DLA Tutorial), describing how to create a Discovery Library Adapter. Certainly, the
deltaEngine can be used in any Assembly Line, and the use in the DLA process is just an
example.

Configuration of deltaEngine.js

The component deltaEngine.js can be obtained from Lotus Quickr Place. Copy this file to
your TDI solution directory. Then follow these steps to configure it:

• Right-click Scripts and click New Script

• In the Input Text, give the Script a name and click OK:

https://cs.opensource.ibm.com/docman/view.php/2505/53695/ITDI_IDML.pdf
https://quickr.tap.ibm.com:9443/dm/atom/library/b8e16780495d5fa48d0bcf0d6090e7ec/document/8ea3a6004de5a6ca9f80bf8604724022/media?errorPage=true&resolve=false


• Click the Config... tab, select the Implicitly Included checkbox and the add the
deltaEngine.js file:

• Click the Properties and add a new Property file:

• In the Connector Configuration tab, specify a name to the Property file:

• In the Property Stores list, move the Derby-Properties to the top of the list:



• In the Editor tab, define the properties below, adjusting the
com.ibm.di.store.database property according to your TDI solution directory:

•

Configuration of the System Store

Before we can use the TDI System Store, we need to start it. Follow these steps to start it:

• Click Store -> Network Server Settings:

• Click Start:



Using the deltaEngine Script

This section describes the procedure to use the deltaEngine in an Assembly Line:

• In a suitable spot in your Assemby Line, add a Script

• In the Input Text dialog, give it a name and click OK:

• Type the following script in the CalculateDelta:

deltaEntry = deltaEngine.computeDelta (work, "machine");

task.logmsg ("deltaEntry: " + deltaEntry.getOperation ());

• Run your Assembly Line. The first time you run the Assembly Line, it shows the
deltaEntry operation as add, indicating the records should be added. The
subsequent runs show the operation as generic, indicating there was no change to
the entry:

11:54:20
11:54:20 @@Old snapshot: [machine:troosevelt.my.com]
11:54:20 @@Commiting snapshot changes...
11:54:20 @@finished
11:54:20 deltaEntry: generic
11:54:20

• Assuming we want to skip the entries that have no change, add the following code
to CalculateDelta script:

deltaEntry = deltaEngine.computeDelta (work, "machine");

task.logmsg ("deltaEntry: " + deltaEntry.getOperation ());



if (!deltaEntry.getOperation().equals ("add")) {
task.logmsg ("Skipping entry: " + work.getString ("machine"));
system.skipEntry ();

}
• Now, the Assemby Line will skip the records that are not new to the data source.

Conclusion

This tutorial showed how to use the deltaEngine.js to determine changes in the data
source. With a few steps, it's possible to leverage the internal TDI System Store to store a
snapshot of the data source and skip records that have been processed.


	Introduction
	Configuration of deltaEngine.js
	Configuration of the System Store
	Using the deltaEngine Script
	Conclusion


